Population-Level Analysis to Determine Parameters That Drive Variation in the Plasma Metabolite Profiles

被引:4
作者
Al-Majdoub, Mahmoud [1 ]
Herzog, Katharina [2 ]
Daka, Bledar [3 ]
Magnusson, Martin [4 ,5 ]
Rastam, Lennart [6 ]
Lindblad, Ulf [3 ]
Spegel, Peter [2 ]
机构
[1] Lund Univ, Skane Univ Hosp, Dept Clin Sci, Unit Mol Metab, SE-20502 Malmo, Sweden
[2] Lund Univ, Ctr Anal & Synth, Dept Chem, S-22362 Lund, Sweden
[3] Univ Gothenburg, Sahlgrenska Acad, Dept Publ Hlth & Community Med Primary Hlth Care, S-40530 Gothenburg, Sweden
[4] Lund Univ, Dept Clin Sci, S-22100 Malmo, Sweden
[5] Lund Univ, Skane Univ Hosp, Dept Cardiol, S-20502 Malmo, Sweden
[6] Lund Univ, Skane Univ Hosp, Dept Clin Sci Malmo, Family & Community Med, S-20502 Malmo, Sweden
基金
欧盟地平线“2020”; 瑞典研究理事会;
关键词
metabolomics; glomerular filtration rate; insulin resistance; acylcarnitines; branched-chain amino acids; ALCOHOL-CONSUMPTION; INSULIN-RESISTANCE; PHYSICAL-ACTIVITY; KIDNEY-DISEASE; METABOLOMICS; SERUM; RISK; ACYLCARNITINES; ASSOCIATION; BIOMARKERS;
D O I
10.3390/metabo8040078
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The plasma metabolome is associated with multiple phenotypes and diseases. However, a systematic study investigating clinical determinants that control the metabolome has not yet been conducted. In the present study, therefore, we aimed to identify the major determinants of the plasma metabolite profile. We used ultra-high performance liquid chromatography (UHPLC) coupled to quadrupole time of flight mass spectrometry (QTOF-MS) to determine 106 metabolites in plasma samples from 2503 subjects in a cross-sectional study. We investigated the correlation structure of the metabolite profiles and generated uncorrelated metabolite factors using principal component analysis (PCA) and varimax rotation. Finally, we investigated associations between these factors and 34 clinical covariates. Our results suggest that liver function, followed by kidney function and insulin resistance show the strongest associations with the plasma metabolite profile. The association of specific phenotypes with several components may suggest multiple independent metabolic mechanisms, which is further supported by the composition of the associated factors.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Metabolite Profiling of LADA Challenges the View of a Metabolically Distinct Subtype [J].
Al-Majdoub, Mahmoud ;
Ali, Arslan ;
Storm, Petter ;
Rosengren, Anders H. ;
Groop, Leif ;
Spegel, Peter .
DIABETES, 2017, 66 (04) :806-814
[2]   The association between self-rated health and impaired glucose tolerance in Swedish adults: A cross-sectional study [J].
Andersson, Susanne ;
Ekman, Inger ;
Friberg, Febe ;
Daka, Bledar ;
Lindblad, Ulf ;
Larsson, Charlotte A. .
SCANDINAVIAN JOURNAL OF PRIMARY HEALTH CARE, 2013, 31 (02) :111-118
[3]   Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients [J].
Bammens, B ;
Evenepoel, P ;
Keuleers, H ;
Verbeke, K ;
Vanrenterghem, Y .
KIDNEY INTERNATIONAL, 2006, 69 (06) :1081-1087
[4]   Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure [J].
Chobanian, AV ;
Bakris, GL ;
Black, HR ;
Cushman, WC ;
Green, LA ;
Izzo, JL ;
Jones, DW ;
Materson, BJ ;
Oparil, S ;
Wright, JT ;
Roccella, EJ .
HYPERTENSION, 2003, 42 (06) :1206-1252
[5]   Purine-rich foods, dairy and protein intake, and the risk of gout in men [J].
Choi, HK ;
Atkinson, K ;
Karlson, EW ;
Willett, W ;
Curhan, G .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 350 (11) :1093-1103
[6]   Predictive Metabolomics Evaluation of Nutrition-Modulated Metabolic Stress Responses in Human Blood Serum During the Early Recovery Phase of Strenuous Physical Exercise [J].
Chorell, Ellin ;
Moritz, Thomas ;
Branth, Stefan ;
Antti, Henrik ;
Svensson, Michael B. .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (06) :2966-2977
[7]   Metabolic Phenotyping and Systems Biology Approaches to Understanding Metabolic Syndrome and Fatty Liver Disease [J].
Dumas, Marc-Emmanuel ;
Kinross, James ;
Nicholson, Jeremy K. .
GASTROENTEROLOGY, 2014, 146 (01) :46-62
[8]   Population-level analysis of gut microbiome variation [J].
Falony, Gwen ;
Joossens, Marie ;
Vieira-Silva, Sara ;
Wang, Jun ;
Darzi, Youssef ;
Faust, Karoline ;
Kurilshikov, Alexander ;
Bonder, Marc Jan ;
Valles-Colomer, Mireia ;
Vandeputte, Doris ;
Tito, Raul Y. ;
Chaffron, Samuel ;
Rymenans, Leen ;
Verspecht, Chlo ;
De Sutter, Lise ;
Lima-Mendez, Gipsi ;
D'hoe, Kevin ;
Jonckheere, Karl ;
Homola, Daniel ;
Garcia, Roberto ;
Tigchelaar, Ettje F. ;
Eeckhaudt, Linda ;
Fu, Jingyuan ;
Henckaerts, Liesbet ;
Zhernakova, Alexandra ;
Wijmenga, Cisca ;
Raes, Jeroen .
SCIENCE, 2016, 352 (6285) :560-564
[9]   Intensity drift removal in LC/MS metabolomics by common variance compensation [J].
Fernandez-Albert, Francesc ;
Llorach, Rafael ;
Garcia-Aloy, Mar ;
Ziyatdinov, Andrey ;
Andres-Lacueva, Cristina ;
Perera, Alexandre .
BIOINFORMATICS, 2014, 30 (20) :2899-2905
[10]   Identification of Serum Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach [J].
Floegel, Anna ;
Stefan, Norbert ;
Yu, Zhonghao ;
Muehlenbruch, Kristin ;
Drogan, Dagmar ;
Joost, Hans-Georg ;
Fritsche, Andreas ;
Haering, Hans-Ulrich ;
de Angelis, Martin Hrabe ;
Peters, Annette ;
Roden, Michael ;
Prehn, Cornelia ;
Wang-Sattler, Rui ;
Illig, Thomas ;
Schulze, Matthias B. ;
Adamski, Jerzy ;
Boeing, Heiner ;
Pischon, Tobias .
DIABETES, 2013, 62 (02) :639-648