Solvated Ionic-Liquid Incorporated Soft Flexible Cross-Linked Network Polymer Electrolytes for Safer Lithium Ion Secondary Batteries

被引:10
作者
Grewal, Manjit Singh [1 ,2 ]
Tanaka, Manabu [1 ,2 ]
Kawakami, Hiroyoshi [1 ,2 ]
机构
[1] Tokyo Metropolitan Univ, Dept Appl Chem, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan
[2] Tokyo Metropolitan Univ, Res Ctr Hydrogen Energy Based Soc ReHES, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan
关键词
crosslinked networks; lithium ion batteries; polymer electrolytes; solvated ionic liquids; tetraglyme; CONDUCTIVITY; SUCCINONITRILE; TEMPERATURE; STABILITY; COMPLEXES; PEO;
D O I
10.1002/macp.202100317
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The present work demonstrates the solvent-free, highly flexible, self-supporting crosslinked network polymer electrolyte membranes with decent ion conductivities and stable battery performance (in terms of rate capability and cycle stability) at ambient temperatures. The network polymer electrolyte membranes are prepared by "thiol-epoxy" and "thiol-ene" (co)polymerization using pentaerythritol tetrakis(3-mercaptopropionate) (PEMP) and terminal-functionalized poly(ethylene glycol) (PEG). The network polymer electrolyte membranes contain small amounts of solvated ionic liquids (equimolar mixture of tetraglyme and lithium salt) at different lithium salt molar concentrations. The obtained membranes display remarkable homogeneity and high amorphous characteristics, good mechanical robustness, high thermal stability, wide electrochemical stability (>4.20 V vs Li/Li+), and superior lithium ion transference number (t(Li+) = 0.20-0.50). The electrochemical and spectroscopic study of the network polymer electrolyte membranes reveals the influence of solvated ionic liquid on the ion conduction, mechanical, thermal, and electrochemical properties. The overall performance of the present crosslinked polymer network electrolyte containing solvated ionic liquid systems postulates the possibility of their practical implementation in the construction of safe and durable alternative electrolytes for high-performance lithium ion batteries working at wide temperatures.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes [J].
Aldalur, Itziar ;
Martinez-Ibanez, Maria ;
Piszcz, Michal ;
Rodriguez-Martinez, Lide M. ;
Zhang, Heng ;
Armand, Michel .
JOURNAL OF POWER SOURCES, 2018, 383 :144-149
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   POLYMER ELECTROLYTES [J].
ARMAND, MB .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1986, 16 :245-261
[4]  
Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/NMAT3602, 10.1038/nmat3602]
[5]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[6]   One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery [J].
Chen, Bo ;
Xu, Qiang ;
Huang, Zhen ;
Zhao, Yanran ;
Chen, Shaojie ;
Xu, Xiaoxiong .
JOURNAL OF POWER SOURCES, 2016, 331 :322-331
[7]   Increasing the conductivity of crystalline polymer electrolytes [J].
Christie, AM ;
Lilley, SJ ;
Staunton, E ;
Andreev, YG ;
Bruce, PG .
NATURE, 2005, 433 (7021) :50-53
[8]   Ternary polymer electrolytes incorporating pyrrolidinium-imide ionic liquids [J].
de Vries, Henrik ;
Jeong, Sangsik ;
Passerini, Stefano .
RSC ADVANCES, 2015, 5 (18) :13598-13606
[9]   New Horizons for Conventional Lithium Ion Battery Technology [J].
Erickson, Evan M. ;
Ghanty, Chandan ;
Aurbach, Doron .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (19) :3313-3324
[10]   ELECTROCHEMICAL MEASUREMENT OF TRANSFERENCE NUMBERS IN POLYMER ELECTROLYTES [J].
EVANS, J ;
VINCENT, CA ;
BRUCE, PG .
POLYMER, 1987, 28 (13) :2324-2328