Comprehensive interaction map of the Arabidopsis MADS box transcription factors

被引:467
作者
de Folter, S
Immink, RGH
Kieffer, M
Parenicová, L
Henz, SR
Weigel, D
Busscher, M
Kooiker, M
Colombo, L
Kater, MM
Davies, B
Angenent, GC [1 ]
机构
[1] Plant Res Int, Business Unit Biosci, NL-6700 AA Wageningen, Netherlands
[2] Univ Leeds, Fac Biol Sci, Ctr Plant Sci, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Milan, Dept Biol, I-20133 Milan, Italy
[4] Max Planck Inst Dev Biol, Dept Mol Biol, D-72076 Tubingen, Germany
[5] Univ Milan, Dept Biomol Sci & Biotechnol, I-20133 Milan, Italy
关键词
D O I
10.1105/tpc.105.031831
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Interactions between proteins are essential for their functioning and the biological processes they control. The elucidation of interaction maps based on yeast studies is a first step toward the understanding of molecular networks and provides a framework of proteins that possess the capacity and specificity to interact. Here, we present a comprehensive plant protein-protein interactome map of nearly all members of the Arabidopsis thaliana MADS box transcription factor family. A matrix-based yeast two-hybrid screen of >100 members of this family revealed a collection of specific heterodimers and a few homodimers. Clustering of proteins with similar interaction patterns pinpoints proteins involved in the same developmental program and provides valuable information about the participation of uncharacterized proteins in these programs. Furthermore, a model is proposed that integrates the floral induction and floral organ formation networks based on the interactions between the proteins involved. Heterodimers between flower induction and floral organ identity proteins were observed, which point to (auto) regulatory mechanisms that prevent the activity of flower induction proteins in the flower.
引用
收藏
页码:1424 / 1433
页数:10
相关论文
共 68 条
[1]   An ancestral MADS-box gene duplication occurred before the divergence of plants and animals [J].
Alvarez-Buylla, ER ;
Pelaz, S ;
Liljegren, SJ ;
Gold, SE ;
Burgeff, C ;
Ditta, GS ;
de Pouplana, LR ;
Martinez-Castilla, L ;
Yanofsky, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5328-5333
[2]   MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes [J].
Alvarez-Buylla, ER ;
Liljegren, SJ ;
Pelaz, S ;
Gold, SE ;
Burgeff, C ;
Ditta, GS ;
Vergara-Silva, F ;
Yanofsky, MF .
PLANT JOURNAL, 2000, 24 (04) :457-466
[3]   Gaining confidence in high-throughput protein interaction networks [J].
Bader, JS ;
Chaudhuri, A ;
Rothberg, JM ;
Chant, J .
NATURE BIOTECHNOLOGY, 2004, 22 (01) :78-85
[4]   Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale [J].
Beyer, A ;
Hollunder, J ;
Nasheuer, HP ;
Wilhelm, T .
MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (11) :1083-1092
[5]  
Blázquez MA, 2000, J CELL SCI, V113, P3547
[6]   A MADS domain gene involved in the transition to flowering in Arabidopsis [J].
Borner, R ;
Kampmann, G ;
Chandler, J ;
Gleissner, R ;
Wisman, E ;
Apel, K ;
Melzer, S .
PLANT JOURNAL, 2000, 24 (05) :591-599
[7]   Detection of protein-protein interactions in plants using bimolecular fluorescence complementation [J].
Bracha-Drori, K ;
Shichrur, K ;
Katz, A ;
Oliva, M ;
Angelovici, R ;
Yalovsky, S ;
Ohad, N .
PLANT JOURNAL, 2004, 40 (03) :419-427
[8]   MADS-box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots [J].
Burgeff, C ;
Liljegren, SJ ;
Tapia-López, R ;
Yanofsky, MF ;
Alvarez-Buylla, ER .
PLANTA, 2002, 214 (03) :365-372
[9]   THE WAR OF THE WHORLS - GENETIC INTERACTIONS CONTROLLING FLOWER DEVELOPMENT [J].
COEN, ES ;
MEYEROWITZ, EM .
NATURE, 1991, 353 (6339) :31-37
[10]   Multiple interactions amongst floral homeotic MADS box proteins [J].
Davies, B ;
EgeaCortines, M ;
Silva, ED ;
Saedler, H ;
Sommer, H .
EMBO JOURNAL, 1996, 15 (16) :4330-4343