DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family

被引:175
作者
Sugano, Yasushi
Muramatsu, Riichi
Ichiyanagi, Atsushi
Sato, Takao
Shoda, Makoto
机构
[1] Tokyo Inst Technol, Chem Resources Lab R1 29, Midori Ku, Yokohama, Kanagawa 2268503, Japan
[2] Tokyo Inst Technol, Grad Sch Biosci & Biotechnol, Midori Ku, Yokohama, Kanagawa 2268501, Japan
关键词
D O I
10.1074/jbc.M706996200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DyP, a unique dye-decolorizing enzyme from the fungus Thanatephorus cucumeris Dec 1, has been classified as a peroxidase but lacks homology to almost all other known plant peroxidases. The primary structure of DyP shows moderate sequence homology to only two known proteins: the peroxide-dependent phenol oxidase, TAP, and the hypothetical peroxidase, cpop21. Here, we show the first crystal structure of DyP and reveal that this protein has a unique tertiary structure with a distal heme region that differs from that of most other peroxidases. DyP lacks an important histidine residue known to assist in the formation of a Fe4(+) oxoferryl center and a porphyrin-based cation radical intermediate (compound I) during the action of ubiquitous peroxidases. Instead, our tertiary structural and spectrophotometric analyses of DyP suggest that an aspartic acid and an arginine are involved in the formation of compound I. Sequence analysis reveals that the important aspartic acid and arginine mentioned above and histidine of the heme ligand are conserved among DyP, TAP, and cpop21, and structural and phylogenetic analyses confirmed that these three enzymes do not belong to any other families of peroxidase. These findings, which strongly suggest that DyP is a representative heme peroxidase from a novel family, should facilitate the identification of additional new family members and accelerate the classification of this novel peroxidase family.
引用
收藏
页码:36652 / 36658
页数:7
相关论文
共 36 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   Microbial decolorization of textile-dye-containing effluents: A review [J].
Banat, IM ;
Nigam, P ;
Singh, D ;
Marchant, R .
BIORESOURCE TECHNOLOGY, 1996, 58 (03) :217-227
[3]   Conversion of an engineered potassium-binding site into a calcium-selective site in cytochrome c peroxidase [J].
Bonagura, CA ;
Bhaskar, B ;
Sundaramoorthy, M ;
Poulos, TL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (53) :37827-37833
[4]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[5]   Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites [J].
Camarero, S ;
Sarkar, S ;
Ruiz-Dueñas, FJ ;
Martínez, MJ ;
Martínez, AT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (15) :10324-10330
[6]  
Dunford HB, 1999, HEME PEROXIDASE
[7]  
FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x
[8]  
FINZEL BC, 1984, J BIOL CHEM, V259, P3027
[9]   Crystal structure of horseradish peroxidase C at 2.15 angstrom resolution [J].
Gajhede, M ;
Schuller, DJ ;
Henriksen, A ;
Smith, AT ;
Poulos, TL .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (12) :1032-1038
[10]   PURIFICATION AND CHARACTERIZATION OF AN EXTRACELLULAR MN(II)-DEPENDENT PEROXIDASE FROM THE LIGNIN-DEGRADING BASIDIOMYCETE, PHANEROCHAETE-CHRYSOSPORIUM [J].
GLENN, JK ;
GOLD, MH .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1985, 242 (02) :329-341