Metallic Carbon Nanotube Nanocavities as Ultracompact and Low- loss Fabry-Perot Plasmonic Resonators

被引:18
作者
Wang, Sheng [1 ,2 ]
Wu, Fanqi [5 ]
Watanabe, Kenji [6 ]
Taniguchi, Takashi [6 ]
Zhou, Chongwu [5 ,7 ]
Wang, Feng [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[5] Univ Southern Calif, Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[6] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan
[7] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Plasmonic nanocavity; Carbon nanotubes; Infrared nanoimaging; Nanophotonics;
D O I
10.1021/acs.nanolett.0c00315
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic resonators enable deep subwavelength manipulation of light matter interactions and have been intensively studied both in fundamental physics as well as for potential technological applications. While various metallic nanostructures have been proposed as plasmonic resonators, their performances are rather limited at mid- and far-infrared wavelengths. Recently, highly confined and low-loss Luttinger liquid plasmons in metallic single-walled carbon nanotubes (SWNTs) have been observed at infrared wavelengths. Here, we tailor metallic SWNTs into ultraclean nanocavities by advanced scanning probe lithography and investigate plasmon modes in these individual nanocavities by infrared nanoimaging. The dependence of mode evolutions on cavity length and excitation wavelength can be captured by a Fabry-Perot resonator model of a plasmon nanowaveguide terminated by highly reflective ends. Plasmonic resonators based on SWNT nanocavities approach the ultimate plasmon confinement limit and open the door to the strong light-matter coupling regime, which may enable various nanophotonic applications.
引用
收藏
页码:2695 / 2702
页数:8
相关论文
共 30 条
[21]   Electrode-Free Anodic Oxidation Nanolithography of Low-Dimensional Materials [J].
Li, Hongyuan ;
Ying, Zhe ;
Lyu, Bosai ;
Deng, Aolin ;
Wang, Lele ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Shi, Zhiwen .
NANO LETTERS, 2018, 18 (12) :8011-8015
[22]   Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube [J].
Martin-Moreno, Luis ;
Javier Garcia de Abajo, F. ;
Garcia-Vidal, Francisco J. .
PHYSICAL REVIEW LETTERS, 2015, 115 (17)
[23]  
Nikitin AY, 2016, NAT PHOTONICS, V10, P239, DOI [10.1038/nphoton.2016.44, 10.1038/NPHOTON.2016.44]
[24]   Plasmonics: Merging photonics and electronics at nanoscale dimensions [J].
Ozbay, E .
SCIENCE, 2006, 311 (5758) :189-193
[25]   Electrical cutting and nicking of carbon nanotubes using an atomic force microscope [J].
Park, JY ;
Yaish, Y ;
Brink, M ;
Rosenblatt, S ;
McEuen, PL .
APPLIED PHYSICS LETTERS, 2002, 80 (23) :4446-4448
[26]  
Schuller JA, 2010, NAT MATER, V9, P193, DOI [10.1038/nmat2630, 10.1038/NMAT2630]
[27]  
Shi ZW, 2015, NAT PHOTONICS, V9, P515, DOI [10.1038/nphoton.2015.123, 10.1038/NPHOTON.2015.123]
[28]   Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures [J].
Tamagnone, Michele ;
Ambrosio, Antonio ;
Chaudhary, Kundan ;
Jauregui, Luis A. ;
Kim, Philip ;
Wilson, William L. ;
Capasso, Federico .
SCIENCE ADVANCES, 2018, 4 (06)
[29]   Single Carbon Nanotubes as Ultrasmall All-Optical Memories [J].
Uda, Takushi ;
Ishii, Akihiro ;
Kato, Yuichiro K. .
ACS PHOTONICS, 2018, 5 (02) :559-565
[30]   Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon [J].
Wang, Sheng ;
Wu, Fanqi ;
Zhao, Sihan ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Zhou, Chongwu ;
Wang, Feng .
NANO LETTERS, 2019, 19 (04) :2360-2365