Wetland restoration yields dynamic nitrate responses across the Upper Mississippi river basin

被引:16
作者
Evenson, Grey R. [1 ]
Golden, Heather E. [1 ]
Christensen, Jay R. [1 ]
Lane, Charles R. [2 ]
Rajib, Adnan [3 ]
D'Amico, Ellen [4 ]
Mahoney, David Tyler [5 ]
White, Elaheh [6 ]
Wu, Qiusheng [7 ]
机构
[1] US EPA, Off Res & Dev, Ctr Environm Measurement & Modeling, Cincinnati, OH 45268 USA
[2] US EPA, Off Res & Dev, Ctr Environm Measurement & Modeling, Athens, GA USA
[3] Texas A&M Univ, Frank H Dotterweich Coll Engn, Dept Environm Engn, Kingsville, TX USA
[4] US EPA, Pegasus Corp, Off Res & Dev, Cincinnati, OH 45268 USA
[5] Univ Louisville, Civil & Environm Engn Dept, Louisville, KY 40292 USA
[6] US EPA, Oak Ridge Inst Sci & Educ, Off Res & Dev, Cincinnati, OH 45268 USA
[7] Univ Tennessee, Dept Geog, Knoxville, TN 37996 USA
来源
ENVIRONMENTAL RESEARCH COMMUNICATIONS | 2021年 / 3卷 / 09期
关键词
nitrogen; denitrification; prioritization; targeting; non-floodplain wetlands; geographically isolated wetlands; GULF-OF-MEXICO; WATER-QUALITY; NITROGEN REMOVAL; LANDSCAPE; HYPOXIA;
D O I
10.1088/2515-7620/ac2125
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wetland restoration is a primary management option for removing surplus nitrogen draining from agricultural landscapes. However, wetland capacity to mitigate nitrogen losses at large river-basin scales remains uncertain. This is largely due to a limited number of studies that address the cumulative and dynamic effects of restored wetlands across the landscape on downstream nutrient conditions. We analyzed wetland restoration impacts on modeled nitrate dynamics across 279 subbasins comprising the similar to 0.5 million km(2) Upper Mississippi River Basin (UMRB), USA, which covers eight states and houses similar to 30 million people. Restoring similar to 8,000 km(2) of wetlands will reduce mean annual nitrate loads to the UMRB outlet by 12%, a substantial improvement over existing conditions but markedly less than widely cited estimates. Our lower wetland efficacy estimates are partly attributed to improved representation of processes not considered by preceding empirical studies - namely the potential for nitrate to bypass wetlands (i.e., via subsurface tile drainage) and be stored or transformed within the river network itself. Our novel findings reveal that wetlands mitigate surplus nitrogen basin-wide, yet they may not be as universally effective in tiled landscapes and because of river network processing.
引用
收藏
页数:10
相关论文
共 50 条
[31]   An integrated cyberinfrastructure system for water quality resources in the Upper Mississippi River Basin [J].
Mount, Jerry ;
Sermet, Yusuf ;
Jones, Christopher S. ;
Schilling, Keith E. ;
Gassman, Philip W. ;
Weber, Larry J. ;
Krajewski, Witold F. ;
Demir, Ibrahim .
JOURNAL OF HYDROINFORMATICS, 2024, 26 (08) :1970-1988
[32]   Perennial biomass production from marginal land in the Upper Mississippi River Basin [J].
Feng, Qingyu ;
Chaubey, Indrajeet ;
Cibin, Raj ;
Engel, Bernard ;
Sudheer, K. P. ;
Volenec, Jeffrey ;
Omani, Nina .
LAND DEGRADATION & DEVELOPMENT, 2018, 29 (06) :1748-1755
[33]   Evaluation of Freshwater Provisioning for Different Ecosystem Services in the Upper Mississippi River Basin: Current Status and Drivers [J].
Li, Ping ;
Chaubey, Indrajeet ;
Muenich, Rebecca L. ;
Wei, Xiaomei .
WATER, 2016, 8 (07)
[34]   Data-driven approaches demonstrate legacy N accumulation in Upper Mississippi River Basin groundwater [J].
Van Meter, Kimberly J. ;
Schultz, Victor O. ;
Chang, Shuyu Y. .
ENVIRONMENTAL RESEARCH LETTERS, 2023, 18 (09)
[35]   FRONTIER: EATING THE METAPHORICAL ELEPHANT: MEETING NITROGEN REDUCTION GOALS IN UPPER MISSISSIPPI RIVER BASIN STATES [J].
Feyereisen, Gary W. ;
Hay, Christopher H. ;
Christianson, Reid D. ;
Helmers, Matthew J. .
JOURNAL OF THE ASABE, 2022, 65 (03) :621-631
[36]   Structuring Nutrient Yields throughout Mississippi/Atchafalaya River Basin Using Machine Learning Approaches [J].
Zhen, Yi ;
Feng, Huan ;
Yoo, Shinjae .
ENVIRONMENTS, 2023, 10 (09)
[37]   Predicting high resolution total phosphorus concentrations for soils of the Upper Mississippi River Basin using machine learning [J].
Dolph, Christine L. ;
Cho, Se Jong ;
Finlay, Jacques C. ;
Hansen, Amy T. ;
Dalzell, Brent .
BIOGEOCHEMISTRY, 2023, 163 (03) :289-310
[38]   Simulating the impacts of bio-fuel crop production on nonpoint source pollution in the Upper Mississippi River Basin [J].
Gu, Roy R. ;
Sahu, Mahesh K. ;
Jha, Manoj K. .
ECOLOGICAL ENGINEERING, 2015, 74 :223-229
[39]   Assessing Impacts of Human Stressors on Stream Fish Habitats across the Mississippi River Basin [J].
Ross, Jared A. A. ;
Infante, Dana M. M. ;
Cooper, Arthur R. R. ;
Whittier, Joanna B. B. ;
Daniel, Wesley M. M. .
WATER, 2023, 15 (13)
[40]   Anthropogenic landcover impacts fluvial dissolved organic matter composition in the Upper Mississippi River Basin [J].
Vaughn, Derrick R. ;
Kellerman, Anne M. ;
Wickland, Kimberly P. ;
Striegl, Robert G. ;
Podgorski, David C. ;
Hawkings, Jon R. ;
Nienhuis, Jaap H. ;
Dornblaser, Mark M. ;
Stets, Edward G. ;
Spencer, Robert G. M. .
BIOGEOCHEMISTRY, 2023, 164 (01) :117-141