Reconstructing parameters of the FitzHugh-Nagumo system from boundary potential measurements

被引:10
|
作者
He, Yuan [1 ]
Keyes, David E. [1 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
FitzHugh-Nagumo model; electrocardiology; parameter identification; PDE-constrained optimization; KKT system; Newton-Krylov method; inverse problems;
D O I
10.1007/s10827-007-0035-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider distributed parameter identification problems for the FitzHugh-Nagumo model of electrocardiology. The model describes the evolution of electrical potentials in heart tissues. The mathematical problem is to reconstruct physical parameters of the system through partial knowledge of its solutions on the boundary of the domain. We present a parallel algorithm of Newton-Krylov type that combines Newton's method for numerical optimization with Krylov subspace solvers for the resulting Karush-Kuhn-Tucker system. We show by numerical simulations that parameter reconstruction can be performed from measurements taken on the boundary of the domain only. We discuss the effects of various model parameters on the quality of reconstructions.
引用
收藏
页码:251 / 264
页数:14
相关论文
共 20 条
  • [11] STEADY STATES OF FITZHUGH-NAGUMO SYSTEM WITH NON-DIFFUSIVE ACTIVATOR AND DIFFUSIVE INHIBITOR
    Li, Ying
    Marciniak-Czochra, Anna
    Takagi, Izumi
    Wu, Boying
    TOHOKU MATHEMATICAL JOURNAL, 2019, 71 (02) : 243 - 279
  • [12] EXISTENCE OF INTERIOR MULTI-PEAK SOLUTIONS IN HIGH-DIMENSIONAL FITZHUGH-NAGUMO SYSTEM
    Hu, Yeyao
    Wang, Bingqi
    Zhou, Xiangyu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, : 3461 - 3477
  • [13] EXISTENCE OF INTERIOR MULTI-PEAK SOLUTIONS IN HIGH-DIMENSIONAL FITZHUGH-NAGUMO SYSTEM
    Hu, Yeyao
    Wang, Bingqi
    Zhou, Xiangyu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (12) : 3461 - 3477
  • [14] Synchronization of excitation waves in a two-layer network of FitzHugh-Nagumo neurons with noise modulation of interlayer coupling parameters
    Ramazanov, I. R.
    Korneev, I. A.
    V. Slepnev, A.
    Vadivasova, T. E.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2022, 30 (06): : 732 - 748
  • [15] Reconstructing the potential for the one-dimensional Schrodinger equation from boundary measurements
    Avdonin, Sergei A.
    Mikhaylov, Victor S.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2014, 31 (01) : 137 - 150
  • [16] Determining a potential of the parabolic equation from partial boundary measurements
    Fan, Jiaming
    Duan, Zhiwen
    INVERSE PROBLEMS, 2021, 37 (09)
  • [17] UNIQUENESS AND LIPSCHITZ STABILITY FOR THE IDENTIFICATION OF LAME PARAMETERS FROM BOUNDARY MEASUREMENTS
    Beretta, Elena
    Francini, Elisa
    Vessella, Sergio
    INVERSE PROBLEMS AND IMAGING, 2014, 8 (03) : 611 - 644
  • [18] Dynamic Model Estimation for Power System Areas from Boundary Measurements
    Saric, Andrija T.
    Transtrum, Mark K.
    Stankovic, Aleksandar M.
    2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,
  • [19] Data-Driven Dynamic Equivalents for Power System Areas From Boundary Measurements
    Saric, Andrija T.
    Transtrum, Mark T.
    Stankovic, Aleksandar M.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (01) : 360 - 370
  • [20] STABLE DETERMINATION OF TIME-DEPENDENT SCALAR POTENTIAL FROM BOUNDARY MEASUREMENTS IN A PERIODIC QUANTUM WAVEGUIDE
    Choulli, Mourad
    Kian, Yavar
    Soccorsi, Eric
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (06) : 4536 - 4558