Symmetry-adapted order parameters and free energies for solids undergoing order-disorder phase transitions

被引:36
|
作者
Natarajan, Anirudh Raju [1 ]
Thomas, John C. [1 ]
Puchala, Brian [2 ]
Van der Ven, Anton [1 ]
机构
[1] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
关键词
OXYGEN REDUCTION REACTION; MONTE-CARLO; MICROSTRUCTURE EVOLUTION; 1ST PRINCIPLES; ISING-MODEL; FIELD; PERFORMANCE; EFFICIENT; TRANSFORMATIONS; THERMOELECTRICS;
D O I
10.1103/PhysRevB.96.134204
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate thermodynamic descriptions are a key ingredient to kinetic theories that describe the mesoscale evolution of a solid undergoing ordering or decomposition reactions. We introduce a general approach to identify order parameters for order-disorder reactions and to calculate first-principles free-energy surfaces as a function of these order parameters. The symmetry of the disordered phase is used to formulate order parameters as linear combinations of sublattice compositions of a reference supercell. The order parameters can distinguish the disordered phase from the symmetrically equivalent variants of a particular ordered phase. A thermodynamic formalism is then developed to rigorously define a coarse-grained free energy as a function of order parameters. Bias potentials are added to the potential energy to enable sampling of the unstable regions within the order parameter domain. Monte Carlo sampling in the biased ensemble is combined with free-energy integration to calculate high-temperature free energies. We illustrate the approach by analyzing the free energies of order-disorder transitions on a two-dimensional triangular lattice and in the technologically important Ni-Al alloy.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] HEATS OF ORDER-DISORDER PHASE-TRANSITIONS IN HYDRIDE SYSTEMS
    SHILOV, AL
    PADURETS, LN
    SOKOLOVA, EI
    KOST, ME
    KUZNETSOV, NT
    ZHURNAL FIZICHESKOI KHIMII, 1989, 63 (04): : 1116 - 1118
  • [32] Grain boundary order-disorder transitions
    Ming Tang
    W. Craig Carter
    Rowland M. Cannon
    Journal of Materials Science, 2006, 41 : 7691 - 7695
  • [33] Soft modes and order-disorder effects in ferroelectric phase transitions
    BussmannHolder, A
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1996, 57 (10) : 1445 - 1448
  • [34] Inferring couplings in networks across order-disorder phase transitions
    Ngampruetikorn, Vudtiwat
    Sachdeva, Vedant
    Torrence, Johanna
    Humplik, Jan
    Schwab, David J.
    Palmer, Stephanie E.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [35] Displacive vs. order-disorder in structural phase transitions
    Pérez-Mato, JM
    Ivantchev, S
    García, A
    Etxebarria, I
    FERROELECTRICS, 2000, 236 (1-4) : 93 - 103
  • [36] THE CLASSIFICATION OF ORDER-DISORDER TRANSITIONS ON SURFACES
    SCHICK, M
    PROGRESS IN SURFACE SCIENCE, 1981, 11 (04) : 245 - 292
  • [37] Order-Disorder Transitions in the Ising Model
    Nefedev, Konstantin V.
    Andriuschenko, Peter D.
    2014 INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGIES IN PHYSICAL AND ENGINEERING APPLICATIONS (ICCTPEA), 2014, : 126 - 127
  • [38] ORDER-DISORDER TRANSITIONS IN A TURBULENT MEDIUM
    BAKAI, AS
    PHYSICA D, 1981, 2 (01): : 52 - 60
  • [39] SURFACE AND BULK ORDER-DISORDER TRANSITIONS
    TERAOKA, Y
    SETO, T
    SURFACE SCIENCE, 1991, 255 (03) : L579 - L584
  • [40] TRICRITICAL POINT IN ORDER-DISORDER PHASE-TRANSITIONS FOR NEMATICS
    BARBERO, G
    EVANGELISTA, LR
    KREKHOV, AP
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (14): : 2521 - 2530