Diffractive microlensing - III. Astrometric signatures

被引:3
作者
Heyl, Jeremy S. [1 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
gravitational lensing: micro; techniques: high angular resolution; astrometry; SOLAR-SYSTEM; GHZ; APPROXIMATION; COUNTS; RADIO;
D O I
10.1111/j.1365-2966.2010.17814.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gravitational lensing is generally treated in the geometric optics limit; however, when the wavelength of the radiation approaches or exceeds the Schwarzschild radius of the lens, diffraction becomes important. Although the magnification generated by diffractive gravitational lensing is well understood, the astrometric signatures of diffractive microlensing are first derived in this paper along with a simple closed-form bound for the astrometric shift. This simple bound yields the maximal shifts for substellar lenses in solar neighbourhood observed at 20 GHz, accessible to high sensitivity, high angular resolution radio telescopes such as the proposed Square Kilometre Array (SKA).
引用
收藏
页码:1787 / 1791
页数:5
相关论文
共 21 条