Efficient estimation of a linear transformation model for current status data via penalized splines

被引:8
|
作者
Lu, Minggen [1 ]
Liu, Yan [1 ]
Li, Chin-Shang [2 ]
机构
[1] Univ Nevada, Sch Community Hlth Sci, Reno, NV 89557 USA
[2] State Univ New York Univ Buffalo, Sch Nursing, Buffalo, NY USA
关键词
Current status data; efficient estimation; goodness-of-fit; penalized spline; transformation model; PROPORTIONAL HAZARDS MODEL; ODDS MODELS; REGRESSION;
D O I
10.1177/0962280218820406
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
We propose a flexible and computationally efficient penalized estimation method for a semi-parametric linear transformation model with current status data. To facilitate model fitting, the unknown monotone function is approximated by monotone B-splines, and a computationally efficient hybrid algorithm involving the Fisher scoring algorithm and the isotonic regression is developed. A goodness-of-fit test and model diagnostics are also considered. The asymptotic properties of the penalized estimators are established, including the optimal rate of convergence for the function estimator and the semi-parametric efficiency for the regression parameter estimators. An extensive numerical experiment is conducted to evaluate the finite-sample properties of the penalized estimators, and the methodology is further illustrated with two real studies.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 50 条
  • [21] Locally efficient estimation with current status data
    vanderLaan, MJ
    AMERICAN STATISTICAL ASSOCIATION 1996 PROCEEDINGS OF THE BIOMETRICS SECTION, 1996, : 41 - 48
  • [22] Semiparametric linear transformation models for current status data
    Sun, JG
    Sun, LQ
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (01): : 85 - 96
  • [23] Estimation in the linear transformation model with missing data
    Mezaouer, Amel
    Boukhetala, Kamal
    Dupuy, Jean-Francois
    JOURNAL OF THE SFDS, 2014, 155 (03): : 120 - 134
  • [24] Efficient estimation for the proportional hazards model with competing risks and current status data
    Sun, Jianguo
    Shen, Junshan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04): : 592 - 606
  • [25] Efficient estimation for the non-mixture cure model with current status data
    Wang, Xiaoguang
    Han, Bo
    STATISTICS, 2020, 54 (04) : 756 - 777
  • [26] Bayesian proportional hazards model for current status data with monotone splines
    Cai, Bo
    Lin, Xiaoyan
    Wang, Lianming
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (09) : 2644 - 2651
  • [27] Penalized spline estimation in the partially linear model
    Holland, Ashley D.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 153 : 211 - 235
  • [28] Penalized nonparametric likelihood-based inference for current status data model
    Hao, Meiling
    Lin, Yuanyuan
    Liu, Kin-yat
    Zhao, Xingqiu
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 3099 - 3134
  • [29] Estimation of the additive hazards model with linear inequality restrictions based on current status data
    Feng, Yanqin
    Sun, Jianguo
    Sun, Lingli
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (01) : 68 - 81
  • [30] Efficient parameter estimation for spectral sensor data by a linear transformation
    Wendler, F.
    Bueschel, P.
    Kanoun, O.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 : 34 - 38