Towards Automatic Parameter Tuning of Stream Processing Systems

被引:29
作者
Bilal, Muhammad [1 ]
Canini, Marco [2 ]
机构
[1] Catholic Univ Louvain, Louvain La Neuve, Belgium
[2] KAUST, Thuwal, Saudi Arabia
来源
PROCEEDINGS OF THE 2017 SYMPOSIUM ON CLOUD COMPUTING (SOCC '17) | 2017年
关键词
D O I
10.1145/3127479.3127492
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimizing the performance of big-data streaming applications has become a daunting and time-consuming task: parameters may be tuned from a space of hundreds or even thousands of possible configurations. In this paper, we present a framework for automating parameter tuning for stream-processing systems. Our framework supports standard black-box optimization algorithms as well as a novel gray-box optimization algorithm. We demonstrate the multiple benefits of automated parameter tuning in optimizing three benchmark applications in Apache Storm. Our results show that a hill-climbing algorithm that uses a new heuristic sampling approach based on Latin Hypercube provides the best results. Our gray-box algorithm provides comparable results while being two to five times faster.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 41 条
[1]  
Allen ST., 2015, Storm Applied: Strategies for real-time event processing
[2]  
Aniello L., 2013, DEBS
[3]  
[Anonymous], 2017, 14 USENIX S NETW SYS
[4]  
Babu S., 2010, SoCC
[5]  
Calandra R, 2016, IEEE IJCNN, P3338, DOI 10.1109/IJCNN.2016.7727626
[6]  
Chandrasekaran S., 2003, SIGMOD
[7]  
Das T., 2014, P ASS COMP MACH S CL, P1, DOI DOI 10.1145/2670979.2670995
[8]  
Duan S., 2009, VLDB ENDOWMENT, V2
[9]  
Floratou A., 2017, VLDB
[10]  
Ganapathi A., 2009, HotPar