Enhanced Low-Frequency Electromagnetic Properties of MOF-Derived Cobalt through Interface Design

被引:163
作者
Liu, Wei [1 ]
Tan, Shujuan [1 ]
Yang, Zhihong [1 ]
Ji, Guangbin [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 211100, Jiangsu, Peoples R China
关键词
porous cobalt; cobalt/carbon composites; metal-organic frameworks; microwave absorption; low frequency; MICROWAVE-ABSORPTION PROPERTIES; WAVE ABSORPTION; CARBON NANOTUBES; FORMATION MECHANISM; LIGHTWEIGHT; COMPOSITE; FRAMEWORK; NANOCOMPOSITES; HETEROSTRUCTURE; CONSTRUCTION;
D O I
10.1021/acsami.8b10685
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
It is still a formidable challenge to ameliorate the low-frequency electromagnetic property of conventional microwave-absorbing materials, which may be conquered by the coexistence of both strong dielectric and magnetic loss ability in low-frequency range and the perfect balance between complex permittivity and permeability with the help of structural design. Herein, by virtue of appropriate composition and structure of Co-3[HCOO](6)center dot dimethylformamide parallelepipeds, one-dimensional spongelike metallic Co can be directly synthesized for the first time with strong magnetic loss in the low-frequency range. Furthermore, attenuation ability and impedance matching condition have been improved through the construction of interfacial structures between inner cobalt and surface carbon. With the structure of carbon changed from fragments to vertically aligned nanoflakes and eventually to a thick layer with extra fragments, the dielectric loss would be continuously strengthened, while the magnetic loss maintains well, followed by a remarkable decline. A perfect balance between dielectric and magnetic loss has been achieved by sample S-Co/C-0.3 with minimum reflection loss value around 20 dB and effective absorption frequency range about 3.84 GHz in the C band. Excellent microwave absorption performance can also be realized in X and Ku bands. In addition, as-prepared Co and Co/C composites can also be potentially applied in electromagnetic shielding. The findings may pave the way for the manufacture of metal-based metal organic framework derivatives and the design of lightweight low-frequency electromagnetic materials.
引用
收藏
页码:31610 / 31622
页数:13
相关论文
共 70 条
[1]   Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method [J].
Alam, Reza Shams ;
Moradi, Mahmood ;
Rostami, Mohammad ;
Nikmanesh, Hossein ;
Moayedi, Razieh ;
Bai, Yang .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 381 :1-9
[2]   Microwave absorbers designed from PVDF/SAN blends containing multiwall carbon nanotubes anchored cobalt ferrite via a pyrene derivative [J].
Biswas, Sourav ;
Kar, Goutam Prasanna ;
Bose, Suryasarathi .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (23) :12413-12426
[3]   Co7Fe3 and Co7Fe3@SiO2 Nanospheres with Tunable Diameters for High-Performance Electromagnetic Wave Absorption [J].
Chen, Na ;
Jiang, Jian-Tang ;
Xu, Cheng-Yan ;
Yuan, Yong ;
Gong, Yuan-Xun ;
Zhen, Liang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) :21933-21941
[4]   Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption [J].
Cheng, Yan ;
Li, Zhaoyong ;
Li, Yong ;
Dai, Sisi ;
Ji, Guangbin ;
Zhao, Huanqin ;
Cao, Jieming ;
Du, Youwei .
CARBON, 2018, 127 :643-652
[5]   Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO [J].
Deng, Jiushuai ;
Zhang, Xi ;
Zhao, Biao ;
Bai, Zhongyi ;
Wen, Shuming ;
Li, Shimei ;
Li, Shaoyuan ;
Yang, Jia ;
Zhang, Rui .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (26) :7128-7140
[6]   Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations [J].
Deng, Jiushuai ;
Li, Shimei ;
Zhou, Yuanyuan ;
Liang, Luyang ;
Zhao, Biao ;
Zhang, Xi ;
Zhang, Rui .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 509 :406-413
[7]   Facile design of a ZnO nanorod-Ni core-shell composite with dual peaks to tune its microwave absorption properties [J].
Deng, Jiushuai ;
Wang, Qibiao ;
Zhou, Yuanyuan ;
Zhao, Biao ;
Zhang, Rui .
RSC ADVANCES, 2017, 7 (15) :9294-9302
[8]   Rational design of core-shell Co@C microspheres for high-performance microwave absorption [J].
Ding, Ding ;
Wang, Ying ;
Li, Xuandong ;
Qiang, Rong ;
Xu, Ping ;
Chu, Wenlei ;
Han, Xijiang ;
Du, Yunchen .
CARBON, 2017, 111 :722-732
[9]   Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite [J].
Ding, Yi ;
Zhang, Zheng ;
Luo, Baohe ;
Liao, Qingliang ;
Liu, Shuo ;
Liu, Yichong ;
Zhang, Yue .
NANO RESEARCH, 2017, 10 (03) :980-990
[10]   Development of Fe/Fe3O4@C composite with excellent electromagnetic absorption performance [J].
Feng, Ailing ;
Jia, Zirui ;
Zhao, Yue ;
Lv, Hualiang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 745 :547-554