Direct electrosynthesis of 52% concentrated CO on silver's twin boundary

被引:52
作者
Tang, Can [1 ,2 ]
Gong, Peng [1 ,2 ]
Xiao, Taishi [1 ,2 ]
Sun, Zhengzong [1 ,2 ,3 ,4 ]
机构
[1] Fudan Univ, Dept Chem, Shanghai, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai, Peoples R China
[3] Fudan Univ, Sch Microelect, Shanghai, Peoples R China
[4] Fudan Univ, State Key Lab ASIC & Syst, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL REDUCTION; ELECTROCATALYTIC REDUCTION; STABLE ELECTROREDUCTION; CARBON-DIOXIDE; GRAPHENE; CONVERSION; ELECTROLYSIS; BICARBONATE; EFFICIENCY; STRENGTH;
D O I
10.1038/s41467-021-22428-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The gaseous product concentration in direct electrochemical CO2 reduction is usually hurdled by the electrode's Faradaic efficiency, current density, and inevitable mixing with the unreacted CO2. A concentrated gaseous product with high purity will greatly lower the barrier for large-scale CO2 fixation and follow-up industrial usage. Here, we developed a pneumatic trough setup to collect the CO2 reduction product from a precisely engineered nanotwinned electrocatalyst, without using ion-exchange membrane. The silver catalyst's twin boundary density can be tuned from 0.3 to 1.5x10(4)cm(-1). With the lengthy and winding twin boundaries, this catalyst exhibits a Faradaic efficiency up to 92% at -1.0V and a turnover frequency of 127s(-1) in converting CO2 to CO. Through a tandem electrochemical-CVD system, we successfully produced CO with a volume percentage of up to 52%, and further transformed it into single layer graphene film. Isolating purified electrosynthesis product is a major challenge in electrochemical carbon dioxide reduction. Here, the authors report a nanotwinned silver electrocatalyst and a pneumatic-trough cell system to produce a 52% concentrated CO, which is further utilized as a carbon feedstock for graphene production.
引用
收藏
页数:8
相关论文
共 52 条
[1]   Tailoring the Edge Structure of Molybdenum Disulfide toward Electrocatalytic Reduction of Carbon Dioxide [J].
Abbasi, Pedram ;
Asadi, Mohammad ;
Liu, Cong ;
Sharifi-Asl, Soroosh ;
Sayahpour, Baharak ;
Behranginia, Amirhossein ;
Zapol, Peter ;
Shahbazian-Yassar, Reza ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
ACS NANO, 2017, 11 (01) :453-460
[2]   Influence of Bubbles on the Energy Conversion Efficiency of Electrochemical Reactors [J].
Angulo, Andrea ;
van der Linde, Peter ;
Gardeniers, Han ;
Modestino, Miguel ;
Rivas, David Fernandez .
JOULE, 2020, 4 (03) :555-579
[3]   High strength, epitaxial nanotwinned Ag films [J].
Bufford, D. ;
Wang, H. ;
Zhang, X. .
ACTA MATERIALIA, 2011, 59 (01) :93-101
[4]   High Rate, Selective, and Stable Electroreduction of CO2 to CO in Basic and Neutral Media [J].
Cao-Thang Dinh ;
de Arquer, F. Pelayo Garcia ;
Sinton, David ;
Sargent, Edward H. .
ACS ENERGY LETTERS, 2018, 3 (11) :2835-2840
[5]   Overpotential for CO2 electroreduction lowered on strained penta-twinned Cu nanowires [J].
Chen, Zhengzheng ;
Zhang, Xu ;
Lu, Gang .
CHEMICAL SCIENCE, 2015, 6 (12) :6829-6835
[6]   Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity [J].
Clark, Ezra L. ;
Hahn, Christopher ;
Jaramillo, Thomas F. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (44) :15848-15857
[7]   Two-step electrochemical reduction of CO2 towards multi-carbon products at high current densities [J].
Cuellar, N. S. Romero ;
Scherer, C. ;
Kackar, B. ;
Eisenreich, W. ;
Huber, C. ;
Wiesner-Fleischer, K. ;
Fleischer, M. ;
Hinrichsen, O. .
JOURNAL OF CO2 UTILIZATION, 2020, 36 :263-275
[8]   Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO [J].
Daiyan, Rahman ;
Zhu, Xiaofeng ;
Tong, Zizheng ;
Gong, Lele ;
Razmjou, Amir ;
Liu, Ru-Shi ;
Xia, Zhenhai ;
Lu, Xunyu ;
Dai, Liming ;
Amal, Rose .
NANO ENERGY, 2020, 78
[9]   Grain-Boundary-Dependent CO2 Electroreduction Activity [J].
Feng, Xiaofeng ;
Jiang, Kaili ;
Fan, Shoushan ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (14) :4606-4609
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)