A NEW MATHEMATICAL APPROACH FOR DETECTION OF ACTIVE AREA IN HUMAN BRAIN fMRI USING NONLINEAR MODEL

被引:1
作者
Taalimi, Ali [1 ]
Fatemizadeh, Emad [1 ]
机构
[1] Sharif Univ Technol, Dept Elect Engn, Tehran, Iran
来源
BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS | 2010年 / 22卷 / 05期
关键词
Functional magnetic resonance imaging; Activation detection; Nonlinear auto regressive model; CEREBRAL-BLOOD-FLOW; BALLOON MODEL; ACTIVATION; DYNAMICS; BOLD; OXYGENATION; SYSTEMS; RESPONSES;
D O I
10.4015/S1016237210002171
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Functional magnetic resonance imaging (fMRI) is widely-used for detection of the brain's neural activity. The signals and images acquired through this imaging technique demonstrate the human brain's response to pre-scheduled tasks. Several studies on blood oxygenation level-dependent (BOLD) signal responses demonstrate nonlinear behavior in response to a stimulus. In this paper we propose a new mathematical approach for modeling BOLD signal activity, which is able to model nonlinear and time variant behaviors of this physiological system. We employ the Nonlinear Auto Regressive Moving Average (NARMA) model to describe the mathematical relationship between output signals and predesigned tasks. The model parameters can be used to distinguish between rest and active states of a brain region. We applied our proposed method for active region detection on real as well as simulated data sets. The results show superior performance in comparison with existing methods.
引用
收藏
页码:409 / 418
页数:10
相关论文
共 50 条
[41]   A new mathematical model of COVID-19 using real data from Pakistan [J].
Peter, Olumuyiwa James ;
Qureshi, Sania ;
Yusuf, Abdullahi ;
Al-Shomrani, Mohammed ;
Idowu, Abioye Abioye .
RESULTS IN PHYSICS, 2021, 24
[42]   Task-Related Edge Density (TED)-A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain [J].
Lohmann, Gabriele ;
Stelzer, Johannes ;
Zuber, Verena ;
Buschmann, Tilo ;
Margulies, Daniel ;
Bartels, Andreas ;
Scheffler, Klaus .
PLOS ONE, 2016, 11 (06)
[43]   Functional brain abnormalities in major depressive disorder using a multiscale community detection approach [J].
Li, Na ;
Jin, Di ;
Wei, Jianguo ;
Huang, Yuxiao ;
Xu, Junhai .
NEUROSCIENCE, 2022, 501 :1-10
[44]   A Model-Free Approach for Emergency Damping Control Using Wide Area Measurements [J].
Pradhan, Vedanta ;
Kulkarni, A. M. ;
Khaparde, S. A. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (05) :4902-4912
[45]   New approach of model based detection of early stages of fuel injector failures [J].
Maczak, Jedrzej ;
Wieclawski, Krzysztof ;
Szczurowski, Krzysztof .
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2023, 25 (01) :1-10
[46]   Traffic Anomaly Detection Model Using K-Means and Active Learning Method [J].
Liao, Niandong ;
Li, Xiaoxuan .
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2022, 24 (05) :2264-2282
[47]   Multiscale modeling of human cerebrovasculature: A hybrid approach using image-based geometry and a mathematical algorithm [J].
Ii, Satoshi ;
Kitade, Hiroki ;
Ishida, Shunichi ;
Imai, Yohsuke ;
Watanabe, Yoshiyuki ;
Wada, Shigeo .
PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (06)
[48]   Using Expectancy Theory to quantitatively dissociate the neural representation of motivation from its influential factors in the human brain: An fMRI study [J].
Kohli, Akshay ;
Blitzer, David N. ;
Lefco, Ray W. ;
Barter, Joseph W. ;
Haynes, M. Ryan ;
Colalillo, Sam A. ;
Ly, Martina ;
Zink, Caroline F. .
NEUROIMAGE, 2018, 178 :552-561
[49]   Using voxel-specific hemodynamic response function in EEG-fMRI data analysis: An estimation and detection model [J].
Lu, Yingli ;
Grova, Christophe ;
Kobayashi, Eliane ;
Dubeau, Francois ;
Gotman, Jean .
NEUROIMAGE, 2007, 34 (01) :195-203
[50]   Investigating the consistency of brain activation using individual trial analysis of high-resolution fMRI in the human primary visual cortex [J].
Nemani, Ajay K. ;
Atkinson, Ian C. ;
Thulborn, Keith R. .
NEUROIMAGE, 2009, 47 (04) :1417-1424