Fatigue crack growth in IN718/316L multi-materials layered structures fabricated by laser powder bed fusion

被引:23
|
作者
Duval-Chaneac, M. S. [1 ,2 ]
Gao, N. [1 ]
Khan, R. H. U. [3 ]
Giles, M. [1 ]
Georgilas, K. [2 ]
Zhao, X. [1 ]
Reed, P. A. S. [1 ]
机构
[1] Univ Southampton, Fac Engn & Phys Sci, Mat Res Grp, Southampton SO17 1BJ, Hants, England
[2] TWI Ltd, NSIRC, Granta Pk, Cambridge CB21 6AL, England
[3] TWI Ltd, Granta Pk, Cambridge CB21 6AL, England
基金
英国工程与自然科学研究理事会;
关键词
Multi-materials; Additive manufacturing (AM); Interface; Fatigue analysis; Crack growth rate; STAINLESS-STEEL; INCONEL; 718; MECHANICAL-PROPERTIES; MATERIALS CHALLENGES; ENERGY DENSITY; HEAT-TREATMENT; 316L; BEHAVIOR; MICROSTRUCTURE; PLASTICITY;
D O I
10.1016/j.ijfatigue.2021.106454
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Multi-materials additive manufacturing (MMAM) allows the functional optimisation of components by tailoring the addition of alloys at different design locations in a single operation. In this study Laser Powder Bed Fusion (L-PBF) technique was used to manufacture layered specimens combining IN718 and 316L materials. The micro-structure and mechanical properties were studied by scanning electron microscopy (SEM), tensile, micro and nanohardness testing. The fatigue tests were performed to determine the crack propagation process through multi-layer specimens in the as-built (AB) state.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
  • [22] Fuzzy process optimization of laser powder bed fusion of 316L stainless steel
    Ponticelli, Gennaro Salvatore
    Venettacci, Simone
    Giannini, Oliviero
    Guarino, Stefano
    Horn, Matthias
    PROGRESS IN ADDITIVE MANUFACTURING, 2023, 8 (03) : 437 - 458
  • [23] Room and elevated temperature fatigue crack propagation behavior of Inconel 718 alloy fabricated by laser powder bed fusion
    Kim, Sumin
    Choi, Heesoo
    Lee, Jehyun
    Kim, Sangshik
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 140
  • [24] Effect of Heat Treatment on Fatigue Performance of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Li, Zhehan
    Xie, Deqiao
    Zhou, Kai
    Naqvi, Syed Mesum Raza
    Wang, Dongsheng
    Zhao, Jianfeng
    Shen, Lida
    Tian, Zongjun
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (04):
  • [25] Effect of scanning speed on fatigue behavior of 316L stainless steel fabricated by laser powder bed fusion
    Cao, Yinfeng
    Moumni, Ziad
    Zhu, Jihong
    Gu, Xiaojun
    Zhang, Yahui
    Zhai, Xingyue
    Zhang, Weihong
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 319
  • [26] Influence of microstructure on stainless steel 316L lattice structures fabricated by electron beam and laser powder bed fusion
    Zeng, Zhuohong
    Wang, Chengcheng
    Lek, Yung Zhen
    Tian, Yuanyuan
    Kandukuri, Sastry Yagnanna
    Bartolo, Paulo Jorge Da Silva
    Zhou, Kun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 859
  • [27] Influence of compound field-assisted on the mechanical properties of 316L stainless steel fabricated by laser powder bed fusion
    Guo, Shuai
    Tang, Rongji
    Guo, Anfu
    Sui, Shang
    Sheng, Xianliang
    Yang, Wenlu
    Qu, Peng
    Wang, Shaoqing
    Zhao, Xiaolin
    Ni, Junjie
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 672 - 684
  • [28] The effect of build orientation on tensile properties and corrosion resistance of 316L stainless steel fabricated by laser powder bed fusion
    Lv, Jinlong
    Zhou, Zhiping
    Wang, Zhuqing
    Xiong, Yida
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 106 : 363 - 369
  • [29] Thermal Behavior of Molten Pool for Laser Directed Energy Deposition of 316L/Inconel 718 Multi-Materials
    Zhang Hao
    Dai Donghua
    Shi Xinyu
    Li Yanze
    Yuan Luhao
    Huang Guangjing
    Gu Dongdong
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (14):
  • [30] Predictive models for fatigue property of laser powder bed fusion stainless steel 316L
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Wei, Jun
    Hardacre, David
    Li, Hua
    MATERIALS & DESIGN, 2018, 145 : 42 - 54