Quadratic double-ratio minimax optimization

被引:4
作者
Zare, Arezu [1 ]
Ashrafi, Ali [1 ]
Xia, Yong [2 ]
机构
[1] Semnan Univ, Fac Math Stat & Comp Sci, Semnan, Iran
[2] Beihang Univ, LMIB, Minist Educ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Fractional programming; Minimax optimization; Quadratic programming; Semidefinite programming; Global optimization; REGULARIZATION; ALGORITHM;
D O I
10.1016/j.orl.2021.06.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The quadratic double-ratio minimax optimization (QRM) admits a generalized linear conic fractional reformulation. It leads to two algorithms to globally solve (QRM) from the primal and dual sides, respectively. The hidden convexity of (QRM) remains unknown except for the special case when both denominators are equal. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:543 / 547
页数:5
相关论文
共 19 条
[1]   Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares [J].
Beck, Amir ;
Ben-Tal, Aharon ;
Teboulle, Marc .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (02) :425-445
[2]   On the solution of the Tikhonov regularization of the total least squares problem [J].
Beck, Amir ;
Ben-Tal, Aharon .
SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (01) :98-118
[3]   A convex optimization approach for minimizing the ratio of indefinite quadratic functions over an ellipsoid [J].
Beck, Amir ;
Teboulle, Marc .
MATHEMATICAL PROGRAMMING, 2009, 118 (01) :13-35
[4]  
Ben-Tal A, 2001, LECT MODERN CONVEX O, V2
[5]   Efficient local search procedures for quadratic fractional programming problems [J].
Consolini, Luca ;
Locatelli, Marco ;
Wang, Jiulin ;
Xia, Yong .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (01) :201-232
[6]   AN ALGORITHM FOR GENERALIZED FRACTIONAL PROGRAMS [J].
CROUZEIX, JP ;
FERLAND, JA ;
SCHAIBLE, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 47 (01) :35-49
[7]   A NOTE ON AN ALGORITHM FOR GENERALIZED FRACTIONAL PROGRAMS [J].
CROUZEIX, JP ;
FERLAND, JA ;
SCHAIBLE, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1986, 50 (01) :183-187
[8]  
Dinkelbach W., 1967, Manage. Sci., V13, P492, DOI [242488, DOI 10.1287/MNSC.13.7.492]
[9]   Minimizing the sum of a linear and a linear fractional function applying conic quadratic representation: continuous and discrete problems [J].
Fakhri, Ashkan ;
Ghatee, Mehdi .
OPTIMIZATION, 2016, 65 (05) :1023-1038
[10]   GENERALIZED CHENEY LOEB DINKELBACH-TYPE ALGORITHMS [J].
FLACHS, J .
MATHEMATICS OF OPERATIONS RESEARCH, 1985, 10 (04) :674-687