Weighted adjacent matrix for K-means clustering

被引:5
|
作者
Zhou, Jukai [1 ]
Liu, Tong [1 ]
Zhu, Jingting [1 ]
机构
[1] Massey Univ, Sch Nat & Computat Sci, Auckland, New Zealand
关键词
k-means clustering; Similarity measurement; Adjacent matrix; Unsupervised learning; ALGORITHM;
D O I
10.1007/s11042-019-08009-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
K-means clustering is one of the most popular clustering algorithms and has been embedded in other clustering algorithms, e.g. the last step of spectral clustering. In this paper, we propose two techniques to improve previous k-means clustering algorithm by designing two different adjacent matrices. Extensive experiments on public UCI datasets showed the clustering results of our proposed algorithms significantly outperform three classical clustering algorithms in terms of different evaluation metrics.
引用
收藏
页码:33415 / 33434
页数:20
相关论文
共 50 条
  • [1] Weighted adjacent matrix for K-means clustering
    Jukai Zhou
    Tong Liu
    Jingting Zhu
    Multimedia Tools and Applications, 2019, 78 : 33415 - 33434
  • [2] Weighted k-Means Algorithm Based Text Clustering
    Chen, Xiuguo
    Yin, Wensheng
    Tu, Pinghui
    Zhang, Hengxi
    IEEC 2009: FIRST INTERNATIONAL SYMPOSIUM ON INFORMATION ENGINEERING AND ELECTRONIC COMMERCE, PROCEEDINGS, 2009, : 51 - +
  • [3] Instance Weighted Clustering: Local Outlier Factor and K-Means
    Moggridge, Paul
    Helian, Na
    Sun, Yi
    Lilley, Mariana
    Veneziano, Vito
    PROCEEDINGS OF THE 21ST ENGINEERING APPLICATIONS OF NEURAL NETWORKS CONFERENCE, EANN 2020, 2020, 2 : 435 - 446
  • [4] Weighted Support Vector Machine Using k-Means Clustering
    Bang, Sungwan
    Jhun, Myoungshic
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (10) : 2307 - 2324
  • [5] K-Means Clustering With Incomplete Data
    Wang, Siwei
    Li, Miaomiao
    Hu, Ning
    Zhu, En
    Hu, Jingtao
    Liu, Xinwang
    Yin, Jianping
    IEEE ACCESS, 2019, 7 : 69162 - 69171
  • [6] Dynamic Incremental K-means Clustering
    Aaron, Bryant
    Tamir, Dan E.
    Rishe, Naphtali D.
    Kandel, Abraham
    2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), VOL 1, 2014, : 308 - 313
  • [7] Balanced K-Means for Clustering
    Malinen, Mikko I.
    Franti, Pasi
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2014, 8621 : 32 - 41
  • [8] On the Optimality of k-means Clustering
    Dalton, Lori A.
    2013 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2013), 2013, : 70 - 71
  • [9] Incremental Nonnegative Matrix Factorization Based on Matrix Sketching and k-means Clustering
    Zhang, Chenyu
    Wang, Hao
    Yang, Shangdong
    Gao, Yang
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2016, 2016, 9937 : 426 - 435
  • [10] Subspace K-means clustering
    Timmerman, Marieke E.
    Ceulemans, Eva
    De Roover, Kim
    Van Leeuwen, Karla
    BEHAVIOR RESEARCH METHODS, 2013, 45 (04) : 1011 - 1023