Two unconditionally stable difference schemes for time distributed-order differential equation based on Caputo-Fabrizio fractional derivative

被引:9
|
作者
Qiao, Haili [1 ]
Liu, Zhengguang [2 ]
Cheng, Aijie [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan, Peoples R China
[2] Shandong Normal Univ, Sch Math & Stat, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Distributed-order; Caputo-Fabrizio derivatives; Compact finite difference; Stability and convergence; Numerical experiments; FINITE-ELEMENT-METHOD; ANOMALOUS DIFFUSION; WAVE-EQUATIONS; TRANSPORT; MODELS;
D O I
10.1186/s13662-020-2514-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider distributed-order partial differential equations with time fractional derivative proposed by Caputo and Fabrizio in a one-dimensional space. Two finite difference schemes are established via Grunwald formula. We show that these two schemes are unconditionally stable with convergence rates O(tau 2+h2+Delta alpha 2) and O(tau 2+h4+Delta alpha 4) in discrete L2, respectively, where Delta alpha, h, and tau are step sizes for distributed-order, space, and time variables, respectively. Finally, the performance of difference schemes is illustrated via numerical examples.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A fast finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction-diffusion equation
    Zhang, Yaping
    Cao, Jiliang
    Bu, Weiping
    Xiao, Aiguo
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2020, 11 (02)
  • [32] An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation
    Hu, Xiuling
    Liu, F.
    Turner, I.
    Anh, V.
    NUMERICAL ALGORITHMS, 2016, 72 (02) : 393 - 407
  • [33] Numerical simulation of the distributed-order time-space fractional Bloch-Torrey equation with variable coefficients
    Zhang, Mengchen
    Liu, Fawang
    Turner, Ian W.
    Anh, Vo V.
    APPLIED MATHEMATICAL MODELLING, 2024, 129 : 169 - 190
  • [34] A high-order space-time spectral method for the distributed-order time-fractional telegraph equation
    Derakhshan, M. H.
    Kumar, Pushpendra
    Salahshour, Soheil
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (08) : 2778 - 2794
  • [35] An ADI orthogonal spline collocation method for a new two-dimensional distributed-order fractional integro-differential equation
    Tang, Bo
    Qiao, Leijie
    Xu, Da
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 132 : 104 - 118
  • [36] FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION
    Sun, Hongguang
    Chen, Wen
    Li, Changpin
    Chen, Yangquan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [37] Optimal control of variably distributed-order time-fractional diffusion equation: Analysis and computation
    Zheng, Xiangcheng
    Liu, Huan
    Wang, Hong
    Guo, Xu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (06)
  • [38] Analysis of a Hidden-Memory Variably Distributed-Order Time-Fractional Diffusion Equation
    Jia, Jinhong
    FRACTAL AND FRACTIONAL, 2022, 6 (11)
  • [39] An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-immobile equation in two dimensions
    Qiu, Wenlin
    Xu, Da
    Chen, Haifan
    Guo, Jing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (12) : 3156 - 3172
  • [40] High-Order Numerical Method for Solving a Space Distributed-Order Time-Fractional Diffusion Equation
    Li, Jing
    Yang, Yingying
    Jiang, Yingjun
    Feng, Libo
    Guo, Boling
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (03) : 801 - 826