TORSION HOMOLOGY GROWTH AND CYCLE COMPLEXITY OF ARITHMETIC MANIFOLDS

被引:24
作者
Bergeron, Nicolas [1 ]
Sengun, Mehmet Haluk [2 ]
Venkatesh, Akshay [3 ]
机构
[1] Univ Paris 06, CNRS, UMR 7586, Inst Math Jussieu, Paris, France
[2] Univ Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
ELLIPTIC-CURVES; ANALYTIC TORSION; MULTIPLICITY ONE; REPRESENTATIONS; FORMS; NUMBER; BOUNDS; COEFFICIENTS; VARIETIES; SPECTRUM;
D O I
10.1215/00127094-3450429
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an arithmetic hyperbolic 3-manifold, such as a Bianchi manifold. We conjecture that there is a basis for the second homology of M, where each basis element is represented by a surface of "low" genus, and we give evidence for this. We explain the relationship between this conjecture and the study of torsion homology growth.
引用
收藏
页码:1629 / 1693
页数:65
相关论文
共 66 条
[31]   NONVANISHING THEOREMS FOR AUTOMORPHIC L-FUNCTIONS ON GL(2) [J].
FRIEDBERG, S ;
HOFFSTEIN, J .
ANNALS OF MATHEMATICS, 1995, 142 (02) :385-423
[32]  
GABAI D, 1983, J DIFFER GEOM, V18, P445
[33]  
Goldfeld D, 2002, PANORAMA IN NUMBER THEORY OR THE VIEW FROM BAKER'S GARDEN, P128
[34]  
Gross B. H., 1982, Number Theory Related to Fermats Last Theorem (Cambridge, Mass., 1981), V26, P219
[35]  
GRUNEWALD F., 1978, PREPRINT
[36]  
HARDER G, 1986, J REINE ANGEW MATH, V366, P53
[37]  
HENDRY M., 2000, GRAD TEXTS MATH, V201, DOI [10.1007/978-1-4612-1210-2, DOI 10.1007/978-1-4612-1210-2]
[38]   COEFFICIENTS OF MAASS FORMS AND THE SIEGEL ZERO [J].
HOFFSTEIN, J ;
LOCKHART, P .
ANNALS OF MATHEMATICS, 1994, 140 (01) :161-176
[39]   CONDUCTOR OF REPRESENTATIONS OF THE LINEAR GROUP [J].
JACQUET, H ;
PIATETSKISHAPIRO, II ;
SHALIKA, J .
MATHEMATISCHE ANNALEN, 1981, 256 (02) :199-214
[40]   ON EULER PRODUCTS AND THE CLASSIFICATION OF AUTOMORPHIC-FORMS .2. [J].
JACQUET, H ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (04) :777-815