TORSION HOMOLOGY GROWTH AND CYCLE COMPLEXITY OF ARITHMETIC MANIFOLDS

被引:24
作者
Bergeron, Nicolas [1 ]
Sengun, Mehmet Haluk [2 ]
Venkatesh, Akshay [3 ]
机构
[1] Univ Paris 06, CNRS, UMR 7586, Inst Math Jussieu, Paris, France
[2] Univ Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
ELLIPTIC-CURVES; ANALYTIC TORSION; MULTIPLICITY ONE; REPRESENTATIONS; FORMS; NUMBER; BOUNDS; COEFFICIENTS; VARIETIES; SPECTRUM;
D O I
10.1215/00127094-3450429
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an arithmetic hyperbolic 3-manifold, such as a Bianchi manifold. We conjecture that there is a basis for the second homology of M, where each basis element is represented by a surface of "low" genus, and we give evidence for this. We explain the relationship between this conjecture and the study of torsion homology growth.
引用
收藏
页码:1629 / 1693
页数:65
相关论文
共 66 条
[11]   Numerical Evidence for the Equivariant Birch and Swinnerton-Dyer Conjecture [J].
Bley, Werner .
EXPERIMENTAL MATHEMATICS, 2011, 20 (04) :426-456
[12]   TWISTED L-FUNCTIONS OVER NUMBER FIELDS AND HILBERT'S ELEVENTH PROBLEM [J].
Blomer, Valentin ;
Harcos, Gergely .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) :1-52
[13]   ARITHMETICAL CHAOS AND VIOLATION OF UNIVERSALITY IN ENERGY-LEVEL STATISTICS [J].
BOLTE, J ;
STEIL, G ;
STEINER, F .
PHYSICAL REVIEW LETTERS, 1992, 69 (15) :2188-2191
[14]  
Borel A., 2000, MATH SURVEYS MONOGRA, DOI 10.1090/surv/067
[15]  
Bosch S., 1990, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Results in Mathematics and Related Areas (3), V21
[16]   Injectivity radii of hyperbolic integer homology 3-spheres [J].
Brock, Jeffrey F. ;
Dunfield, Nathan M. .
GEOMETRY & TOPOLOGY, 2015, 19 (01) :497-523
[17]   Effective multiplicity one on GLN and narrow zero-free regions for Rankin-Selberg L-functions [J].
Brumley, Farrell .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (06) :1455-1474
[18]  
BUSHNELL CJ, 1987, J REINE ANGEW MATH, V375, P184
[19]  
CALEGARI F., 1632, PREPRINT
[20]   Bounds for multiplicities of unitary representations of cohomological type in spaces of cusp forms [J].
Calegari, Frank ;
Emerton, Matthew .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1437-1446