The maximum principles for fractional Laplacian equations and their applications

被引:41
作者
Cheng, Tingzhi [1 ]
Huang, Genggeng [1 ]
Li, Congming [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
[2] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Fractional Laplacian; moving plane; maximum principle; NONLINEAR ELLIPTIC-EQUATIONS; SYMMETRY; REGULARITY; MONOTONICITY;
D O I
10.1142/S0219199717500183
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to investigate the symmetry and monotonicity properties for positive solutions of fractional Laplacian equations. Especially, we consider the following fractional Laplacian equation with homogeneous Dirichlet condition: { (-Delta)(alpha/2) u = f(x, u,del u) in Omega, for alpha is an element of(0, 2). u > 0, in Omega; u equivalent to 0, in R-n\Omega, Here Omega is a domain (bounded or unbounded) in R-n which is convex in x(1)-direction. (-Delta)(alpha/2) is the nonlocal fractional Laplacian operator which is defined as (-Delta)(alpha/2)u(x) = Cn,alpha P.V. integral(n)(R) u(x) - u(y)/vertical bar x - y vertical bar (n+alpha), 0 < alpha < 2. Under various conditions on f(x, u, p) and on a solution u(x) it is shown that u is strictly increasing in x(1) in the left half of Omega, or in Omega. Symmetry (in x(1)) of some solutions is proved.
引用
收藏
页数:12
相关论文
共 25 条
[1]  
Alexandrov A. D., 1958, AM MATH SOC TRANSL, V21, P412
[2]  
Berestycki H., 1988, J. Geom. Phys., V5, P237
[3]  
Berestycki H., 1991, Bol. Soc. Bras. Mat, V22, P1, DOI [DOI 10.1007/BF01244896, 10.1007/BF01244896]
[4]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[5]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[6]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[7]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[8]   Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations [J].
Capella, Antonio ;
Davila, Juan ;
Dupaigne, Louis ;
Sire, Yannick .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) :1353-1384
[9]   A direct method of moving planes for the fractional Laplacian [J].
Chen, Wenxiong ;
Li, Congming ;
Li, Yan .
ADVANCES IN MATHEMATICS, 2017, 308 :404-437
[10]   Indefinite fractional elliptic problem and Lionville theorems [J].
Chen, Wenxiong ;
Zhu, Jiuyi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) :4758-4785