histoneHMM: Differential analysis of histone modifications with broad genomic footprints

被引:11
作者
Heinig, Matthias [1 ]
Colome-Tatche, Maria [3 ]
Taudt, Aaron [3 ]
Rintisch, Carola [2 ]
Schafer, Sebastian [2 ]
Pravenec, Michal [4 ]
Hubner, Norbert [2 ]
Vingron, Martin [1 ]
Johannes, Frank [5 ]
机构
[1] Max Planck Inst Mol Genet, Dept Computat Mol Biol, D-14195 Berlin, Germany
[2] Max Delbruck Ctr Mol Med, Expt Genet Grp, D-13092 Berlin, Germany
[3] Univ Groningen, Univ Med Ctr Groningen, European Res Inst Biol Ageing, NL-9713 AV Groningen, Netherlands
[4] Acad Sci Czech Republ, Inst Physiol, CR-14220 Prague, Czech Republic
[5] Univ Groningen, Groningen Bioinformat Ctr, NL-9747 AG Groningen, Netherlands
关键词
ChIP-seq; Histone modifications; Hidden Markov model; Computational biology; Differential analysis; CHIP-SEQ; GENE-EXPRESSION; X-CHROMOSOME; IDENTIFICATION; ALGORITHM; PACKAGE; DOMAINS; IMPACT; PEAKS;
D O I
10.1186/s12859-015-0491-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: ChIP-seq has become a routine method for interrogating the genome-wide distribution of various histone modifications. An important experimental goal is to compare the ChIP-seq profiles between an experimental sample and a reference sample, and to identify regions that show differential enrichment. However, comparative analysis of samples remains challenging for histone modifications with broad domains, such as heterochromatin-associated H3K27me3, as most ChIP-seq algorithms are designed to detect well defined peak-like features. Results: To address this limitation we introduce histoneHMM, a powerful bivariate Hidden Markov Model for the differential analysis of histone modifications with broad genomic footprints. histoneHMM aggregates short-reads over larger regions and takes the resulting bivariate read counts as inputs for an unsupervised classification procedure, requiring no further tuning parameters. histoneHMM outputs probabilistic classifications of genomic regions as being either modified in both samples, unmodified in both samples or differentially modified between samples. We extensively tested histoneHMM in the context of two broad repressive marks, H3K27me3 and H3K9me3, and evaluated region calls with follow up qPCR as well as RNA-seq data. Our results show that histoneHMM outperforms competing methods in detecting functionally relevant differentially modified regions. Conclusion: histoneHMM is a fast algorithm written in C++ and compiled as an R package. It runs in the popular R computing environment and thus seamlessly integrates with the extensive bioinformatic tool sets available through Bioconductor. This makes histoneHMM an attractive choice for the differential analysis of ChIP-seq data. Software is available from http://histonehmm.molgen.mpg.de.
引用
收藏
页数:15
相关论文
共 48 条
[21]   Picking ChIP-seq peak detectors for analyzing chromatin modification experiments [J].
Micsinai, Mariann ;
Parisi, Fabio ;
Strino, Francesco ;
Asp, Patrik ;
Dynlacht, Brian D. ;
Kluger, Yuval .
NUCLEIC ACIDS RESEARCH, 2012, 40 (09) :e70
[22]   Genome-wide maps of chromatin state in pluripotent and lineage-committed cells [J].
Mikkelsen, Tarjei S. ;
Ku, Manching ;
Jaffe, David B. ;
Issac, Biju ;
Lieberman, Erez ;
Giannoukos, Georgia ;
Alvarez, Pablo ;
Brockman, William ;
Kim, Tae-Kyung ;
Koche, Richard P. ;
Lee, William ;
Mendenhall, Eric ;
O'Donovan, Aisling ;
Presser, Aviva ;
Russ, Carsten ;
Xie, Xiaohui ;
Meissner, Alexander ;
Wernig, Marius ;
Jaenisch, Rudolf ;
Nusbaum, Chad ;
Lander, Eric S. ;
Bernstein, Bradley E. .
NATURE, 2007, 448 (7153) :553-U2
[23]  
Nelsen R. B., 1999, INTRO COPULAS
[24]  
Okamoto K, 1972, SPONTANEOUS HYPERTEN
[25]   ChIP-seq: advantages and challenges of a maturing technology [J].
Park, Peter J. .
NATURE REVIEWS GENETICS, 2009, 10 (10) :669-680
[26]   ArrayExpress - a public database of microarray experiments and gene expression profiles [J].
Parkinson, H. ;
Kapushesky, M. ;
Shojatalab, M. ;
Abeygunawardena, N. ;
Coulson, R. ;
Farne, A. ;
Holloway, E. ;
Kolesnykov, N. ;
Lilja, P. ;
Lukk, M. ;
Mani, R. ;
Rayner, T. ;
Sharma, A. ;
William, E. ;
Sarkans, U. ;
Brazma, A. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D747-D750
[27]   Altered Histone Acetylation Is Associated with Age-Dependent Memory Impairment in Mice [J].
Peleg, Shahaf ;
Sananbenesi, Farahnaz ;
Zovoilis, Athanasios ;
Burkhardt, Susanne ;
Bahari-Javan, Sanaz ;
Agis-Balboa, Roberto Carlos ;
Cota, Perla ;
Wittnam, Jessica Lee ;
Gogol-Doering, Andreas ;
Opitz, Lennart ;
Salinas-Riester, Gabriella ;
Dettenhofer, Markus ;
Kang, Hui ;
Farinelli, Laurent ;
Chen, Wei ;
Fischer, Andre .
SCIENCE, 2010, 328 (5979) :753-756
[28]   A Histone Mutant Reproduces the Phenotype Caused by Loss of Histone-Modifying Factor Polycomb [J].
Pengelly, Ana Raquel ;
Copur, Oemer ;
Jaeckle, Herbert ;
Herzig, Alf ;
Mueller, Juerg .
SCIENCE, 2013, 339 (6120) :698-699
[29]   HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data [J].
Qin, Zhaohui S. ;
Yu, Jianjun ;
Shen, Jincheng ;
Maher, Christopher A. ;
Hu, Ming ;
Kalyana-Sundaram, Shanker ;
Yu, Jindan ;
Chinnaiyan, Arul M. .
BMC BIOINFORMATICS, 2010, 11
[30]   A TUTORIAL ON HIDDEN MARKOV-MODELS AND SELECTED APPLICATIONS IN SPEECH RECOGNITION [J].
RABINER, LR .
PROCEEDINGS OF THE IEEE, 1989, 77 (02) :257-286