histoneHMM: Differential analysis of histone modifications with broad genomic footprints

被引:11
作者
Heinig, Matthias [1 ]
Colome-Tatche, Maria [3 ]
Taudt, Aaron [3 ]
Rintisch, Carola [2 ]
Schafer, Sebastian [2 ]
Pravenec, Michal [4 ]
Hubner, Norbert [2 ]
Vingron, Martin [1 ]
Johannes, Frank [5 ]
机构
[1] Max Planck Inst Mol Genet, Dept Computat Mol Biol, D-14195 Berlin, Germany
[2] Max Delbruck Ctr Mol Med, Expt Genet Grp, D-13092 Berlin, Germany
[3] Univ Groningen, Univ Med Ctr Groningen, European Res Inst Biol Ageing, NL-9713 AV Groningen, Netherlands
[4] Acad Sci Czech Republ, Inst Physiol, CR-14220 Prague, Czech Republic
[5] Univ Groningen, Groningen Bioinformat Ctr, NL-9747 AG Groningen, Netherlands
关键词
ChIP-seq; Histone modifications; Hidden Markov model; Computational biology; Differential analysis; CHIP-SEQ; GENE-EXPRESSION; X-CHROMOSOME; IDENTIFICATION; ALGORITHM; PACKAGE; DOMAINS; IMPACT; PEAKS;
D O I
10.1186/s12859-015-0491-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: ChIP-seq has become a routine method for interrogating the genome-wide distribution of various histone modifications. An important experimental goal is to compare the ChIP-seq profiles between an experimental sample and a reference sample, and to identify regions that show differential enrichment. However, comparative analysis of samples remains challenging for histone modifications with broad domains, such as heterochromatin-associated H3K27me3, as most ChIP-seq algorithms are designed to detect well defined peak-like features. Results: To address this limitation we introduce histoneHMM, a powerful bivariate Hidden Markov Model for the differential analysis of histone modifications with broad genomic footprints. histoneHMM aggregates short-reads over larger regions and takes the resulting bivariate read counts as inputs for an unsupervised classification procedure, requiring no further tuning parameters. histoneHMM outputs probabilistic classifications of genomic regions as being either modified in both samples, unmodified in both samples or differentially modified between samples. We extensively tested histoneHMM in the context of two broad repressive marks, H3K27me3 and H3K9me3, and evaluated region calls with follow up qPCR as well as RNA-seq data. Our results show that histoneHMM outperforms competing methods in detecting functionally relevant differentially modified regions. Conclusion: histoneHMM is a fast algorithm written in C++ and compiled as an R package. It runs in the popular R computing environment and thus seamlessly integrates with the extensive bioinformatic tool sets available through Bioconductor. This makes histoneHMM an attractive choice for the differential analysis of ChIP-seq data. Software is available from http://histonehmm.molgen.mpg.de.
引用
收藏
页数:15
相关论文
共 48 条
[1]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[2]   The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance [J].
Atanur, Santosh S. ;
Birol, Inanc ;
Guryev, Victor ;
Hirst, Martin ;
Hummel, Oliver ;
Morrissey, Catherine ;
Behmoaras, Jacques ;
Fernandez-Suarez, Xose M. ;
Johnson, Michelle D. ;
McLaren, William M. ;
Patone, Giannino ;
Petretto, Enrico ;
Plessy, Charles ;
Rockland, Kathleen S. ;
Rockland, Charles ;
Saar, Kathrin ;
Zhao, Yongjun ;
Carninci, Piero ;
Flicek, Paul ;
Kurtz, Ted ;
Cuppen, Edwin ;
Pravenec, Michal ;
Hubner, Norbert ;
Jones, Steven J. M. ;
Birney, Ewan ;
Aitman, Timothy J. .
GENOME RESEARCH, 2010, 20 (06) :791-803
[3]   Regulation of X-chromosome inactivation by the X-inactivation centre [J].
Augui, Sandrine ;
Nora, Elphege P. ;
Heard, Edith .
NATURE REVIEWS GENETICS, 2011, 12 (06) :429-442
[4]   High-resolution profiling of histone methylations in the human genome [J].
Barski, Artern ;
Cuddapah, Suresh ;
Cui, Kairong ;
Roh, Tae-Young ;
Schones, Dustin E. ;
Wang, Zhibin ;
Wei, Gang ;
Chepelev, Iouri ;
Zhao, Keji .
CELL, 2007, 129 (04) :823-837
[5]   A MAXIMIZATION TECHNIQUE OCCURRING IN STATISTICAL ANALYSIS OF PROBABILISTIC FUNCTIONS OF MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T ;
SOULES, G ;
WEISS, N .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (01) :164-&
[6]   PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription [J].
Beck, David B. ;
Oda, Hisanobu ;
Shen, Steven S. ;
Reinberg, Danny .
GENES & DEVELOPMENT, 2012, 26 (04) :325-337
[7]   Silencing chromatin: comparing modes and mechanisms [J].
Beisel, Christian ;
Paro, Renato .
NATURE REVIEWS GENETICS, 2011, 12 (02) :123-135
[8]   The NIH Roadmap Epigenomics Mapping Consortium [J].
Bernstein, Bradley E. ;
Stamatoyannopoulos, John A. ;
Costello, Joseph F. ;
Ren, Bing ;
Milosavljevic, Aleksandar ;
Meissner, Alexander ;
Kellis, Manolis ;
Marra, Marco A. ;
Beaudet, Arthur L. ;
Ecker, Joseph R. ;
Farnham, Peggy J. ;
Hirst, Martin ;
Lander, Eric S. ;
Mikkelsen, Tarjei S. ;
Thomson, James A. .
NATURE BIOTECHNOLOGY, 2010, 28 (10) :1045-1048
[9]   BayesPeak-an R package for analysing ChIP-seq data [J].
Cairns, Jonathan ;
Spyrou, Christiana ;
Stark, Rory ;
Smith, Mike L. ;
Lynch, Andy G. ;
Tavare, Simon .
BIOINFORMATICS, 2011, 27 (05) :713-714
[10]   Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data [J].
Carroll, Thomas S. ;
Liang, Ziwei ;
Salama, Rafik ;
Stark, Rory ;
de Santiago, Ines .
FRONTIERS IN GENETICS, 2014, 5