Improving methanol selectivity in CO2 hydrogenation by tuning the distance of Cu on catalyst

被引:40
|
作者
Cui, Xiaojing [1 ]
Chen, Shuai [2 ]
Yang, Huanhuan [3 ]
Liu, Yequn [2 ]
Wang, Huifang [1 ]
Zhang, He [1 ]
Xue, Yanfeng [1 ]
Wang, Guofu [2 ]
Niu, Yulan [1 ]
Deng, Tiansheng [2 ]
Fan, Weibin [2 ]
机构
[1] Taiyuan Inst Technol, Inst Interface Chem & Engn, Dept Chem & Chem Engn, 31 Xinlan Rd, Taiyuan 030008, Peoples R China
[2] Chinese Acad Sci, Inst Coal Chem, 27 South Taoyuan Rd, Taiyuan 030001, Peoples R China
[3] Zhengzhou Univ, Henan Inst Adv Technol, 97 Wenhua Rd, Zhengzhou 450003, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; hydrogenation; Methanol; Cu/ZnO catalyst; Distance effect; Hydrogen spillover; HYDROTALCITE-LIKE PRECURSORS; ZINC-OXIDE; CU/ZN/AL/ZR CATALYSTS; ACTIVE-SITES; COPPER; SPILLOVER; WATER; ZNO; SYNERGY; PD;
D O I
10.1016/j.apcatb.2021.120590
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is desirable but challenging to obtain high methanol selectivity in CO2 hydrogenation on Cu/ZnO catalysts. Herein, we dispersed a commercial Cu/ZnO/Al2O3 on a silica support for CO2 hydrogenation to methanol, and discovered by high-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM) that the distance between Cu nanoparticles on silica tuned the total methanol selectivity from 35.5 mol% to 88.9 mol%. This distance effect of Cu was elucidated by H-2-TPR, FT-IR, in situ DRIFT, and catalyst silylation modification. It was identified that the active hydrogen species produced on Cu diffuse onto silica via the surface silanols, promoting reverse water gas shift (RWGS) reaction to produce CO. The average concentration of spilled hydrogen species was decreased along with the distance of Cu on silica, suppressing RWGS reaction and thus highlighting methanol selectivity. We anticipate that the distance effect observed here is prevalent on metal supported catalysts in other (de)hydrogenation reactions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst
    Li, Shaozhong
    Guo, Limin
    Ishihara, Tatsumi
    CATALYSIS TODAY, 2020, 339 : 352 - 361
  • [2] Influence of Indium as a Promoter on the Stability and Selectivity of the Nanocrystalline Cu/CeO2 Catalyst for CO2 Hydrogenation to Methanol
    Sharma, Sachin Kumar
    Paul, Bappi
    Pal, Rohan Singh
    Bhanja, Piyali
    Banerjee, Arghya
    Samanta, Chanchal
    Bal, Rajaram
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (24) : 28201 - 28213
  • [3] CO2 hydrogenation to methanol over Cu/ZnO plate model catalyst: Effects of reducing gas induced Cu nanoparticle morphology
    Huang, Chunlei
    Wen, Jinjun
    Sun, Yuhai
    Zhang, Mingyuan
    Bao, Yunfeng
    Zhang, Yudong
    Liang, Long
    Fu, Mingli
    Wu, Junliang
    Ye, Daiqi
    Chen, Limin
    CHEMICAL ENGINEERING JOURNAL, 2019, 374 : 221 - 230
  • [4] Enhancing methanol selectivity of commercial Cu/ZnO/Al2O3 catalyst in CO2 hydrogenation by surface silylation
    Cui, Xiaojing
    Liu, Yequn
    Mei, Yangang
    Li, Jiamei
    Zhang, He
    Zhu, Shanhui
    Niu, Yulan
    Deng, Tiansheng
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 339
  • [5] Improvement of methanol selectivity in CO2 hydrogenation via tuning Cu dispersion on support
    Cui X.-J.
    Yan L.-H.
    Wang H.-F.
    Yang H.
    Xue Y.-F.
    Zhang H.
    Niu Y.-L.
    Deng T.-S.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2022, 36 (04): : 562 - 569
  • [6] Insight into the correlation between Cu species and methanol selectivity from CO2 hydrogenation over Cu-based catalyst
    Shi, Peixiang
    Han, Jiahao
    Yan, Zhiqiang
    Luo, Pengcheng
    Wang, Jingjing
    Ban, Hongyan
    Zhang, Xinghua
    Li, Congming
    MOLECULAR CATALYSIS, 2024, 563
  • [7] A highly efficient Cu/ZnOx/ZrO2 catalyst for selective CO2 hydrogenation to methanol
    Xu, Yanan
    Gao, Zhihong
    Peng, Li
    Liu, Kang
    Yang, Yang
    Qiu, Rongxing
    Yang, Shuliang
    Wu, Chenhao
    Jiang, Jiaheng
    Wang, Yanliang
    Tan, Wenjun
    Wang, Hongtao
    Li, Jun
    JOURNAL OF CATALYSIS, 2022, 414 : 236 - 244
  • [8] CO2 hydrogenation to methanol: the structure-activity relationships of different catalyst systems
    Stangeland, Kristian
    Li, Hailong
    Yu, Zhixin
    ENERGY ECOLOGY AND ENVIRONMENT, 2020, 5 (04) : 272 - 285
  • [9] A DFT study of methanol synthesis from CO2 hydrogenation on Cu/ZnO catalyst
    Wang, Xingzi
    Zhang, Hai
    Qin, Huang
    Wu, Kunming
    Wang, Kai
    Ma, Junfang
    Fan, Weidong
    FUEL, 2023, 346
  • [10] Synergy between active sites of Cu-In-Zr-O catalyst in CO2 hydrogenation to methanol
    Yao, Libo
    Shen, Xiaochen
    Pan, Yanbo
    Peng, Zhenmeng
    JOURNAL OF CATALYSIS, 2019, 372 : 74 - 85