MgFeSiO4 as a potential cathode material for magnesium batteries: ion diffusion rates and voltage trends

被引:68
作者
Heath, Jennifer [1 ]
Chen, Hungru [1 ]
Islam, M. Saiful [1 ]
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
RECHARGEABLE MG BATTERIES; CRYSTAL-STRUCTURE; CHEVREL PHASES; MGXMO6T8; T; ELECTROCHEMICAL INTERCALATION; LITHIUM TRANSPORT; COBALT SILICATE; METAL-OXIDES; INSERTION; OLIVINE;
D O I
10.1039/c7ta03201c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing rechargeable magnesium batteries has become an area of growing interest as an alternative to lithium-ion batteries largely due to their potential to offer increased energy density from the divalent charge of the Mg ion. Unlike the lithium silicates for Li-ion batteries, MgFeSiO4 can adopt the olivine structure as observed for LiFePO4. Here we combine advanced modelling techniques based on energy minimization, molecular dynamics (MD) and density functional theory to explore the Mg-ion conduction, doping and voltage behaviour of MgFeSiO4. The Mg-ion migration activation energy is relatively low for a Mg-based cathode, and MD simulations predict a diffusion coefficient (D-Mg) of 10(-9) cm(2) s(-1), which suggest favourable electrode kinetics. Partial substitution of Fe by Co or Mn could increase the cell voltage from 2.3 V vs. Mg/Mg2+ to 2.8-3.0 V. The new fundamental insights presented here should stimulate further work on low-cost silicate cathodes for Mg batteries.
引用
收藏
页码:13161 / 13167
页数:7
相关论文
共 74 条
[1]   Progress in nonaqueous magnesium electrochemistry [J].
Amir, N. ;
Vestfrid, Y. ;
Chusid, O. ;
Gofer, Y. ;
Aurbach, D. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :1234-1240
[2]   Structure and Lithium Transport Pathways in Li2FeSiO4 Cathodes for Lithium Batteries [J].
Armstrong, A. Robert ;
Kuganathan, Navaratnarajah ;
Islam, M. Saiful ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (33) :13031-13035
[3]  
Armstrong AR, 2011, NAT MATER, V10, P223, DOI [10.1038/nmat2967, 10.1038/NMAT2967]
[4]   On-demand design of polyoxianionic cathode materials based on electronegativity correlations:: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) [J].
Arroyo-de Dompablo, M. E. ;
Armand, M. ;
Tarascon, J. M. ;
Amador, U. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (08) :1292-1298
[5]   Prototype systems for rechargeable magnesium batteries [J].
Aurbach, D ;
Lu, Z ;
Schechter, A ;
Gofer, Y ;
Gizbar, H ;
Turgeman, R ;
Cohen, Y ;
Moshkovich, M ;
Levi, E .
NATURE, 2000, 407 (6805) :724-727
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges [J].
Canepa, Pieremanuele ;
Gautam, Gopalakrishnan Sai ;
Hannah, Daniel C. ;
Malik, Rahul ;
Liu, Miao ;
Gallagher, Kevin G. ;
Persson, Kristin A. ;
Ceder, Gerbrand .
CHEMICAL REVIEWS, 2017, 117 (05) :4287-4341
[8]  
Catlow C.R.A., 1997, COMPUTER MODELLING I
[9]   Crossover of cation partitioning in olivines: a combination of ab initio and Monte Carlo study [J].
Chatterjee, Swastika ;
Bhattacharyya, Sirshendu ;
Sengupta, Surajit ;
Saha-Dasgupta, Tanusri .
PHYSICS AND CHEMISTRY OF MINERALS, 2011, 38 (04) :259-265
[10]   Site preference of Fe atoms in FeMgSiO4 and FeMg(SiO3)2 studied by density functional calculations [J].
Chatterjee, Swastika ;
Sengupta, Surajit ;
Saha-Dasgupta, Tanusri ;
Chatterjee, Koustav ;
Mandal, Nibir .
PHYSICAL REVIEW B, 2009, 79 (11)