Predictive power management strategies for stand-alone hydrogen systems: Operational impact

被引:47
作者
Brka, Adel [1 ]
Al-Abdeli, Yasir M. [1 ]
Kothapalli, Ganesh [1 ]
机构
[1] Edith Cowan Univ, Sch Engn, 270 Joondalup Dr, Joondalup, WA 6027, Australia
关键词
Hydrogen; Predictive; Power management strategy; Renewables; Device intermittency; Optimisation; RENEWABLE ENERGY-SYSTEMS; PARTICLE SWARM OPTIMIZATION; OPTIMAL-DESIGN; TECHNOECONOMIC OPTIMIZATION; PERFORMANCE ANALYSIS; GENERATION SYSTEM; HYBRID; STORAGE; MODEL; CONVERSION;
D O I
10.1016/j.ijhydene.2016.03.085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper compares the operational impacts of both predictive and reactive Power Management Strategies (P-PMS and R-PMS). The study is implemented for a stand-alone hybrid system based on wind turbines (WG), batteries (BAT) and hydrogen technology. The P-PMS uses real-time Neural Network (NN) predictions of wind speed and load demand to adjust the control set points affecting the switching of devices. The study also analyses the effects of using another intelligent technique, Particle Swarm Optimisation (PSO), for real-time optimisation of fuel cell operation. Genetic Algorithms (GA) are used to optimally size the hydrogen system. The methods employed include MATLAB simulations to implement the three intelligent techniques (GA, NN and PSO) and integration of experimentally derived fuel cell characteristics as well as highly dynamic electric load and wind speed profiles. The research presented in this study is an extension of an earlier work in which the concept of P-PMS was experimentally validated and the effects of some software and hardware related controlling parameters assessed. This paper however goes further by analysing the impact of using P-PMS on the economic and operational characteristics of stand-alone hydrogen systems by benchmarking it against an R-PMS. Results reveal that a hybrid system operating under a P-PMS outperforms that with an R-PMS in terms of cost, renewables penetration and environmental footprint. In addition, this study showed that P-PMS can help mitigate the impact of the transient response of the backup components (fuel cell and electrolyser) on the system sizing and operation. However, these merits are realised only if a particularly high reliability of load satisfaction is required. Results also show that a P-PMS highly depends on the accuracy of the employed (NN) prediction tool. The proposed predictive strategies are proven to be better than other solutions that exist in literature in terms of reducing the cost. Copyright (C) 2016, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6685 / 6698
页数:14
相关论文
共 71 条
[1]   Renewable energy systems based on hydrogen for remote applications [J].
Agbossou, K ;
Chahine, R ;
Hamelin, J ;
Laurencelle, F ;
Anouar, A ;
St-Arnaud, JM ;
Bose, TK .
JOURNAL OF POWER SOURCES, 2001, 96 (01) :168-172
[2]  
[Anonymous], 2002, HOMER PRO VER 1 58
[3]   Genetic-Algorithm-Based Optimization Approach for Energy Management [J].
Arabali, A. ;
Ghofrani, M. ;
Etezadi-Amoli, M. ;
Fadali, M. S. ;
Baghzouz, Y. .
IEEE TRANSACTIONS ON POWER DELIVERY, 2013, 28 (01) :162-170
[4]   Feasibility study and energy conversion analysis of stand-alone hybrid renewable energy system [J].
Baghdadi, Fazia ;
Mohammedi, Kamal ;
Diaf, Said ;
Behar, Omar .
ENERGY CONVERSION AND MANAGEMENT, 2015, 105 :471-479
[5]  
Ballard Power Systems, NEX POW MOD US MAN M
[6]   Optimal design of a hybrid solar-wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP) [J].
Bilal, B. Ould ;
Sambou, V. ;
Ndiaye, P. A. ;
Kebe, C. M. F. ;
Ndongo, M. .
RENEWABLE ENERGY, 2010, 35 (10) :2388-2390
[7]   Control analysis of renewable energy system with hydrogen storage for residential applications [J].
Bilodeau, A. ;
Agbossou, K. .
JOURNAL OF POWER SOURCES, 2006, 162 (02) :757-764
[8]  
BOM, W AUSTR WEATH WARN
[9]   Methodology for optimally sizing the combination of a battery bank and PV array in a Wind/PV hybrid system [J].
Borowy, BS ;
Salameh, ZM .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 1996, 11 (02) :367-373
[10]  
Brka A, 2014, INT J SUSTAIN ENERGY, V6451, P1