Fractional Model for a Class of Diffusion-Reaction Equation Represented by the Fractional-Order Derivative

被引:8
|
作者
Sene, Ndolane [1 ]
机构
[1] Univ Cheikh Anta Diop Dakar, Fac Sci Econ & Gest, Dept Math Decis, Lab Lmdan, BP 5683, Dakar, Senegal
关键词
fractional diffusion model; fractional order derivative; Laplace transform; CHAOS;
D O I
10.3390/fractalfract4020015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes the analytical solution for a class of the fractional diffusion equation represented by the fractional-order derivative. We mainly use the Grunwald-Letnikov derivative in this paper. We are particularly interested in the application of the Laplace transform proposed for this fractional operator. We offer the analytical solution of the fractional model as the diffusion equation with a reaction term expressed by the Grunwald-Letnikov derivative by using a double integration method. To illustrate our findings in this paper, we represent the analytical solutions for different values of the used fractional-order derivative.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [41] Perturbation for fractional-order evolution equation
    Mohamed A. E. Herzallah
    Ahmed M. A. El-Sayed
    Dumitru Baleanu
    Nonlinear Dynamics, 2010, 62 : 593 - 600
  • [42] Fractional order [proportional derivative] controller for a class of fractional order systems
    Luo, Ying
    Chen, YangQuan
    AUTOMATICA, 2009, 45 (10) : 2446 - 2450
  • [43] Perturbation for fractional-order evolution equation
    Herzallah, Mohamed A. E.
    El-Sayed, Ahmed M. A.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2010, 62 (03) : 593 - 600
  • [44] A Fractional Spline Collocation Method for the Fractional-order Logistic Equation
    Pitolli, Francesca
    Pezza, Laura
    APPROXIMATION THEORY XV, 2017, 201 : 307 - 318
  • [45] On a fractional reaction–diffusion equation
    Bruno de Andrade
    Arlúcio Viana
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [46] Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order
    Kashkari, Bothayna S. H.
    Syam, Muhammed I.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 290 : 281 - 291
  • [47] Solution of the First Boundary Value Problem for a Fractional-Order Diffusion Equation
    A. V. Pskhu
    Differential Equations, 2003, 39 : 1359 - 1363
  • [48] Solution of the first boundary value problem for a fractional-order diffusion equation
    Pskhu, AV
    DIFFERENTIAL EQUATIONS, 2003, 39 (09) : 1359 - 1363
  • [49] Edge-Based Fractional-Order Adaptive Strategies for Synchronization of Fractional-Order Coupled Networks With Reaction-Diffusion Terms
    Lv, Yujiao
    Hu, Cheng
    Yu, Juan
    Jiang, Haijun
    Huang, Tingwen
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (04) : 1582 - 1594
  • [50] A numerical method for nonlinear fractional reaction-advection-diffusion equation with piecewise fractional derivative
    Heydari, M. H.
    Atangana, A.
    MATHEMATICAL SCIENCES, 2023, 17 (02) : 169 - 181