InferPy: Probabilistic modeling with Tensorflow made easy

被引:7
作者
Cabanas, Rafael [1 ]
Salmeron, Antonio [1 ]
Masegosa, Andres R. [1 ]
机构
[1] Univ Almeria, ES-04120 Almeria, Spain
关键词
Probabilistic programming; Hierarchical probabilistic models; Latent variables; Tensorflow; User-friendly;
D O I
10.1016/j.knosys.2018.12.030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
InferPy is a high-level Python API for probabilistic modeling built on top of Edward and Tensorflow. InferPy, which is strongly inspired by Keras, focuses on being user-friendly by using an intuitive set of abstractions that make easy to deal with complex probabilistic models. It should be seen as an interface rather than a standalone machine-learning framework. In general, InferPy has the focus on enabling flexible data processing, easy-to-code probabilistic modeling, scalable inference and robust model validation. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 27
页数:3
相关论文
共 9 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] [Anonymous], ADAPT COMPUT MACH LE
  • [3] [Anonymous], PYR DEEP UN PROB PRO
  • [4] [Anonymous], 2014, HIST PROGRAMMING LAN
  • [5] Probabilistic machine learning and artificial intelligence
    Ghahramani, Zoubin
    [J]. NATURE, 2015, 521 (7553) : 452 - 459
  • [6] Gordon Andrew D., 2014, FUTURE SOFTWARE ENG, P167, DOI [DOI 10.1145/2593882.2593900, 10.1145/2593882.2593900]
  • [7] Russell Stuart J., 2010, Artificial Intelligence: A Modern Approach, Prentice Hall series in artificial intelligence, V3rd
  • [8] Tran D., ARXIV161009787
  • [9] The NumPy Array: A Structure for Efficient Numerical Computation
    van der Walt, Stefan
    Colbert, S. Chris
    Varoquaux, Gael
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2011, 13 (02) : 22 - 30