Generalized Rough Sets and Implication Lattices

被引:0
作者
Samanta, Pulak [1 ]
Chakraborty, Mihir Kumar [2 ,3 ]
机构
[1] Katwa Coll, Dept Math, Burdwan, W Bengal, India
[2] Indian Statistical Inst, Ctr Soft Comp Res, Honorary Visiting Professor, Kolkata, India
[3] Ctr Cognitive Sci Jadavpur Univ, India &UGC Visiting Professor, Kolkata, India
来源
TRANSACTIONS ON ROUGH SETS XIV | 2011年 / 6600卷
关键词
rough sets; partition; covering; implication lattice; modal logic; OPERATORS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper consists of an extensive survey of various generalized approaches to the lower and upper approximations of a set, the two approximations being first defined by Pawlak while introducing rough set theory. Particularly, relational, covering based and operator based approaches are considered. Categorization of various approaches in terms of implication lattices is shown. Significance of this categorization in rough logics is briefly mentioned.
引用
收藏
页码:183 / +
页数:4
相关论文
共 39 条
  • [1] [Anonymous], 1993, ILLC PREPUBLICATION
  • [2] [Anonymous], 1988, Bull. Pol. Acad. Sci Math
  • [3] [Anonymous], INCOMPLETE INFORM RO
  • [4] Banerjee M., 1996, Fundamenta Informaticae, V28, P211
  • [5] Banerjee M, 2007, LECT NOTES ARTIF INT, V4482, P427
  • [6] Benerjee M., 2004, ROUGH NERUAL COMPUTI
  • [7] Extensions and intentions in the rough set theory
    Bonikowski, Z
    Bryniarski, E
    Wybraniec-Skardowska, U
    [J]. INFORMATION SCIENCES, 1998, 107 (1-4) : 149 - 167
  • [8] Bonikowski Z., 1992, Notre Dame J. Formal Log., V33, P412, DOI 10.1305/ndjfl/1093634405
  • [9] Bunder MW, 2008, LECT NOTES COMPUT SC, V5084, P1, DOI 10.1007/978-3-540-85064-9_1
  • [10] CATTANEO G., 1994, PREPRINT