Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin

被引:57
作者
Zheng, Zhong [2 ,3 ,4 ,5 ]
Jian, Jia [4 ,5 ]
Zhang, Xinli [4 ,5 ]
Zara, Janette N. [6 ]
Yin, Wei [4 ,5 ,7 ]
Chiang, Michael [4 ,5 ]
Liu, Yi [4 ,5 ,8 ]
Wang, Joyce [9 ]
Pang, Shen [2 ,3 ]
Ting, Kang [2 ,3 ,4 ,5 ]
Soo, Chia [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Orthopaed Surg, Los Angeles, CA 90095 USA
[2] Orthoped Hosp, Dept Orthopaed Surg, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Orthopaed Hosp, Res Ctr, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Sch Dent, Dent & Craniofacial Res Inst, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Sch Dent, Sect Orthodont, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[7] Dalian Med Univ, Coll Stomatol, Dept Endodont & Periodont, Dalian 116044, Liaoning, Peoples R China
[8] Shandong Univ, Sch & Hosp Stomatol, Dept Orthodont, Jinan, Peoples R China
[9] SUNY Buffalo, Sch Med, Buffalo, NY 14260 USA
关键词
Fibromodulin; Fibromodulin reprogrammed cells; FReP cells; Multipotent cells; Differentiation; PLURIPOTENT STEM-CELLS; EXTRACELLULAR-MATRIX; SOMATIC-CELLS; GROWTH-FACTOR; GENERATION; NANOG; MOUSE; DIFFERENTIATION; INDUCTION; EXPRESSION;
D O I
10.1016/j.biomaterials.2012.04.049
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Pluripotent and/or multipotent stem cell-based therapeutics are a vital component of tissue engineering and regenerative medicine. The generation or isolation of safer and readily available stem cell sources will significantly aid clinical applications. We report here a technique using a single molecule, recombinant human fibromodulin protein (FMOD), to reprogram human fibroblasts into multipotent cells. Like virally-induced pluripotent stem (iPS) cells, FMOD reprogrammed (FReP) cells express pluripotency markers, form embryoid bodies (EBs), and differentiate into ectoderm, mesoderm, and endoderm derivatives in vitro. Notably, FReP cells regenerate muscle and bone tissues but do not generate teratomas in vivo. Unlike iPS cells, undifferentiated FReP cells proliferate slowly and express low protooncogene c-MYC and unexpectedly high levels of cyclin-dependent kinase inhibitors p15(Ink4B) and p21(WAF1/Cip1). Remarkably, in a fashion reminiscent of quiescent stem cells, the slow replicative phenotype of undifferentiated FReP cells reverses after differentiation induction, with differentiating FReP cells proliferating faster and expressing less p15(Ink4B) and p21(WAF1/CiP1) than differentiating iPS cells. Overall, single protein, FMOD-based, cell reprograming bypasses the risks of mutation, gene instability, and malignancy associated with genetically-modified iPS cells, and provides an alternative strategy for engineering patient-specific multipotent cells for basic research and therapeutic application. Published by Elsevier Ltd.
引用
收藏
页码:5821 / 5831
页数:11
相关论文
共 50 条
[41]   Reprogramming of murine and human somatic cells using a single polycistronic vector [J].
Carey, Bryce W. ;
Markoulaki, Styliani ;
Hanna, Jacob ;
Saha, Kris ;
Gao, Qing ;
Mitalipova, Maisam ;
Jaenisch, Rudolf .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (01) :157-162
[42]   Reprogramming human fibroblasts to pluripotency using modified mRNA [J].
Mandal, Pankaj K. ;
Rossi, Derrick J. .
NATURE PROTOCOLS, 2013, 8 (03) :568-582
[43]   Reprogramming of the MHC-I and Its Regulation by NFκB in Human-Induced Pluripotent Stem Cells [J].
Pick, Marjorie ;
Ronen, Daniel ;
Yanuka, Ofra ;
Benvenisty, Nissim .
STEM CELLS, 2012, 30 (12) :2700-2708
[44]   Direct Conversion of Normal and Alzheimer's Disease Human Fibroblasts into Neuronal Cells by Small Molecules [J].
Hu, Wenxiang ;
Qiu, Binlong ;
Guan, Wuqiang ;
Wang, Qinying ;
Wang, Min ;
Li, Wei ;
Gao, Longfei ;
Shen, Lu ;
Huang, Yin ;
Xie, Gangcai ;
Zhao, Hanzhi ;
Jin, Ying ;
Tang, Beisha ;
Yu, Yongchun ;
Zhao, Jian ;
Pei, Gang .
CELL STEM CELL, 2015, 17 (02) :204-212
[45]   Comparing the reprogramming efficiency of mouse embryonic fibroblasts, mouse bone marrow mesenchymal stem cells and bone marrow mononuclear cells to iPSCs [J].
Wang, Lei ;
Zhu, Mingyan ;
Guo, Qingsong ;
Fan, Xiangjun ;
Lu, Yuhua ;
Zhu, Shajun ;
Wang, Yao ;
Huang, Yan ;
Wang, Zhiwei .
IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2012, 48 (04) :236-243
[46]   Direct reprogramming of human fibroblasts into sweat gland-like cells [J].
Zhao, Zhiliang ;
Xu, Mengyao ;
Wu, Meng ;
Ma, Kui ;
Sun, Mengli ;
Tian, Xiaocheng ;
Zhang, Cuiping ;
Fu, Xiaobing .
CELL CYCLE, 2015, 14 (21) :3498-3505
[47]   Establishment of human induced trophoblast stem cells via reprogramming of fibroblasts [J].
Tan, Jia Ping ;
Liu, Xiaodong ;
Polo, Jose M. .
NATURE PROTOCOLS, 2022, 17 (12) :2739-2759
[48]   Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells under Xeno-free Conditions [J].
Rodriguez-Piza, Ignasi ;
Richaud-Patin, Yvonne ;
Vassena, Rita ;
Gonzalez, Federico ;
Jose Barrero, Maria ;
Veiga, Anna ;
Raya, Angel ;
Izpisua Belmonte, Juan Carlos .
STEM CELLS, 2010, 28 (01) :36-44
[49]   Evaluating the potential of poly(beta-amino ester) nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells [J].
Bhise, Nupura S. ;
Wahlin, Karl J. ;
Zack, Donald J. ;
Green, Jordan J. .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2013, 8 :4641-4658
[50]   The small leucine rich proteoglycan fibromodulin is overexpressed in human prostate epithelial cancer cell lines in culture and human prostate cancer tissue [J].
Reyes, Niradiz ;
Benedetti, Ines ;
Bettin, Alfonso ;
Rebollo, Juan ;
Geliebter, Jan .
CANCER BIOMARKERS, 2016, 16 (01) :191-202