Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin

被引:57
作者
Zheng, Zhong [2 ,3 ,4 ,5 ]
Jian, Jia [4 ,5 ]
Zhang, Xinli [4 ,5 ]
Zara, Janette N. [6 ]
Yin, Wei [4 ,5 ,7 ]
Chiang, Michael [4 ,5 ]
Liu, Yi [4 ,5 ,8 ]
Wang, Joyce [9 ]
Pang, Shen [2 ,3 ]
Ting, Kang [2 ,3 ,4 ,5 ]
Soo, Chia [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Orthopaed Surg, Los Angeles, CA 90095 USA
[2] Orthoped Hosp, Dept Orthopaed Surg, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Orthopaed Hosp, Res Ctr, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Sch Dent, Dent & Craniofacial Res Inst, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Sch Dent, Sect Orthodont, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[7] Dalian Med Univ, Coll Stomatol, Dept Endodont & Periodont, Dalian 116044, Liaoning, Peoples R China
[8] Shandong Univ, Sch & Hosp Stomatol, Dept Orthodont, Jinan, Peoples R China
[9] SUNY Buffalo, Sch Med, Buffalo, NY 14260 USA
关键词
Fibromodulin; Fibromodulin reprogrammed cells; FReP cells; Multipotent cells; Differentiation; PLURIPOTENT STEM-CELLS; EXTRACELLULAR-MATRIX; SOMATIC-CELLS; GROWTH-FACTOR; GENERATION; NANOG; MOUSE; DIFFERENTIATION; INDUCTION; EXPRESSION;
D O I
10.1016/j.biomaterials.2012.04.049
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Pluripotent and/or multipotent stem cell-based therapeutics are a vital component of tissue engineering and regenerative medicine. The generation or isolation of safer and readily available stem cell sources will significantly aid clinical applications. We report here a technique using a single molecule, recombinant human fibromodulin protein (FMOD), to reprogram human fibroblasts into multipotent cells. Like virally-induced pluripotent stem (iPS) cells, FMOD reprogrammed (FReP) cells express pluripotency markers, form embryoid bodies (EBs), and differentiate into ectoderm, mesoderm, and endoderm derivatives in vitro. Notably, FReP cells regenerate muscle and bone tissues but do not generate teratomas in vivo. Unlike iPS cells, undifferentiated FReP cells proliferate slowly and express low protooncogene c-MYC and unexpectedly high levels of cyclin-dependent kinase inhibitors p15(Ink4B) and p21(WAF1/Cip1). Remarkably, in a fashion reminiscent of quiescent stem cells, the slow replicative phenotype of undifferentiated FReP cells reverses after differentiation induction, with differentiating FReP cells proliferating faster and expressing less p15(Ink4B) and p21(WAF1/CiP1) than differentiating iPS cells. Overall, single protein, FMOD-based, cell reprograming bypasses the risks of mutation, gene instability, and malignancy associated with genetically-modified iPS cells, and provides an alternative strategy for engineering patient-specific multipotent cells for basic research and therapeutic application. Published by Elsevier Ltd.
引用
收藏
页码:5821 / 5831
页数:11
相关论文
共 50 条
[31]   Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts [J].
Li, Dong ;
Secher, Jan O. ;
Juhl, Morten ;
Mashayekhi, Kaveh ;
Nielsen, Troels T. ;
Holst, Bjorn ;
Hyttel, Poul ;
Freude, Kristine K. ;
Hall, Vanessa J. .
CELL CYCLE, 2017, 16 (11) :1070-1084
[32]   Induction of Pluripotent Stem Cells from Primordial Germ Cells by Single Reprogramming Factors [J].
Nagamatsu, Go ;
Kosaka, Takeo ;
Saito, Shigeru ;
Honda, Hiroaki ;
Takubo, Keiyo ;
Kinoshita, Taisuke ;
Akiyama, Hideo ;
Sudo, Tetsuo ;
Horimoto, Katsuhisa ;
Oya, Mototsugu ;
Suda, Toshio .
STEM CELLS, 2013, 31 (03) :479-487
[33]   CDKN2B upregulation prevents teratoma formation in multipotent fibromodulin-reprogrammed cells [J].
Zheng, Zhong ;
Li, Chenshuang ;
Ha, Pin ;
Chang, Grace X. ;
Yang, Pu ;
Zhang, Xinli ;
Kim, Jong Kil ;
Jiang, Wenlu ;
Pang, Xiaoxiao ;
Berthiaume, Emily A. ;
Mills, Zane ;
Haveles, Christos S. ;
Chen, Eric ;
Ting, Kang ;
Soo, Chia .
JOURNAL OF CLINICAL INVESTIGATION, 2019, 129 (08) :3236-3251
[34]   Human-stimulated oocyte extract induces genetic and mitochondrial reprogramming of mesenchymal stromal cells [J].
El-Gammal, Zaynab ;
AlOkda, Abdelrahman ;
Ali, Sameh S. ;
Reda, Asmaa ;
Magdeldin, Sameh ;
Mansour, Ragaa ;
El-Badri, Nagwa .
PLOS ONE, 2020, 15 (05)
[35]   Genetic Analysis of the Role of the Reprogramming Gene LIN-28 in Human Embryonic Stem Cells [J].
Darr, Henia ;
Benvenisty, Nissim .
STEM CELLS, 2009, 27 (02) :352-362
[36]   Two Factor Reprogramming of Human Neural Stem Cells into Pluripotency [J].
Hester, Mark E. ;
Song, SungWon ;
Miranda, Carlos J. ;
Eagle, Amy ;
Schwartz, Phillip H. ;
Kaspar, Brian K. .
PLOS ONE, 2009, 4 (09)
[37]   Direct reprogramming of human fibroblasts into insulin-producing cells using transcription factors [J].
Fontcuberta-PiSunyer, Marta ;
Garcia-Alaman, Ainhoa ;
Prades, Elia ;
Tellez, Noelia ;
Alves-Figueiredo, Hugo ;
Ramos-Rodriguez, Mireia ;
Enrich, Carlos ;
Fernandez-Ruiz, Rebeca ;
Cervantes, Sara ;
Clua, Laura ;
Ramon-Azcon, Javier ;
Broca, Christophe ;
Wojtusciszyn, Anne ;
Montserrat, Nuria ;
Pasquali, Lorenzo ;
Novials, Anna ;
Servitja, Joan-Marc ;
Vidal, Josep ;
Gomis, Ramon ;
Gasa, Rosa .
COMMUNICATIONS BIOLOGY, 2023, 6 (01)
[38]   Reprogramming of human pancreatic exocrine cells to β-like cells [J].
Lemper, M. ;
Leuckx, G. ;
Heremans, Y. ;
German, M. S. ;
Heimberg, H. ;
Bouwens, L. ;
Baeyens, L. .
CELL DEATH AND DIFFERENTIATION, 2015, 22 (07) :1117-1130
[39]   Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells [J].
Xue, Yuanchao ;
Qian, Hao ;
Hu, Jing ;
Zhou, Bing ;
Zhou, Yu ;
Hu, Xihao ;
Karakhanyan, Aziz ;
Pang, Zhiping ;
Fu, Xiang-Dong .
NATURE NEUROSCIENCE, 2016, 19 (06) :807-+
[40]   Direct Reprogramming of Adult Human Fibroblasts to Functional Neurons under Defined Conditions [J].
Ambasudhan, Rajesh ;
Talantova, Maria ;
Coleman, Ronald ;
Yuan, Xu ;
Zhu, Saiyong ;
Lipton, Stuart A. ;
Ding, Sheng .
CELL STEM CELL, 2011, 9 (02) :113-118