Generalizations of Ostrowski type inequalities via Hermite polynomials

被引:1
作者
Kvesic, Ljiljanka [1 ]
Pecaric, Josip [2 ]
Penava, Mihaela Ribicic [3 ]
机构
[1] Univ Mostar, Fac Sci & Educ, Matice Hratske Bb, Mostar 88000, Bosnia & Herceg
[2] RUDN Univ, Miklukho Maklaya Str 6, Moscow 117198, Russia
[3] Univ Osijek, Dept Math, Trg Ljudevita Gaja 6, Osijek 31000, Croatia
关键词
Ostrowski type inequality; Hermite polynomials; Montgomery identity; Gruss inequality;
D O I
10.1186/s13660-020-02441-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new generalizations of the weighted Montgomery identity constructed by using the Hermite interpolating polynomial. The obtained identities are used to establish new generalizations of weighted Ostrowski type inequalities for differentiable functions of class C-n. Also, we consider new bounds for the remainder of the obtained identities by using the Chebyshev functional and certain Gruss type inequalities for this functional. By applying those results we derive inequalities for the class ofn-convex functions.
引用
收藏
页数:14
相关论文
共 18 条
  • [1] Agarwal R. P., 1993, Error Inequalities in Polynomial Interpolation and Their Applications
  • [2] Agli Aljinovi A., 2013, GEN INTEGRAL IDENTIT
  • [3] ON SOME OSTROWSKI TYPE INEQUALITIES VIA MONTGOMERY IDENTITY AND TAYLOR'S FORMULA II
    Aljinovic, A. Aglic
    Pecaric, J.
    Vukelic, A.
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (04): : 279 - 301
  • [4] Companion inequalities to Ostrowski-Gruss type inequality and applications
    Awan, Khalid Mahmood
    Pecaric, Josip
    Penava, Mihaela Ribicic
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (02) : 228 - 234
  • [5] NEW ESTIMATIONS OF THE REMAINDER IN THREE-POINT QUADRATURE FORMULAE OF EULER TYPE
    Bakula, M. Klaricic
    Pecaric, J.
    Penava, M. Ribicic
    Vukelic, A.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (04): : 1143 - 1156
  • [6] Some Gruss type inequalities and corrected three-point quadrature formulae of Euler type
    Bakula, Milica Klaricic
    Pecaric, Josip
    Penava, Mihaela Ribicic
    Vukelic, Ana
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [7] SOME NEW OSTROWSKI-TYPE BOUNDS FOR THE CEBYSEV FUNCTIONAL AND APPLICATIONS
    Cerone, P.
    Dragomir, S. S.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01): : 159 - 170
  • [8] Dragomir SS, 2015, ACTA MATH UNIV COMEN, V84, P63
  • [9] Dragomir S.S., 2017, RGMIA RES REP COLLEC, V20, P49
  • [10] FINK A. M., 1993, CLASSICAL NEW INEQUA