Freeness and multirestriction of hyperplane arrangements

被引:7
作者
Schulze, Mathias [1 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
关键词
hyperplane arrangement; free divisor;
D O I
10.1112/S0010437X12000164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalizing a result of Yoshinaga in dimension three, we show that a central hyperplane arrangement in 4-space is free exactly if its restriction with multiplicities to a fixed hyperplane of the arrangement is free and its reduced characteristic polynomial equals the characteristic polynomial of this restriction. We show that the same statement holds true in any dimension when imposing certain tameness hypotheses.
引用
收藏
页码:799 / 806
页数:8
相关论文
共 10 条
[1]   The characteristic polynomial of a multiarrangement [J].
Abe, Takuro ;
Terao, Hiroaki ;
Wakefield, Max .
ADVANCES IN MATHEMATICS, 2007, 215 (02) :825-838
[2]   The module of logarithmic p-forms of a locally free arrangement [J].
Mustata, M ;
Schenck, HK .
JOURNAL OF ALGEBRA, 2001, 241 (02) :699-719
[3]   COMBINATORICS AND TOPOLOGY OF COMPLEMENTS OF HYPERPLANES [J].
ORLIK, P ;
SOLOMON, L .
INVENTIONES MATHEMATICAE, 1980, 56 (02) :167-189
[4]  
Orlik P., 1992, Arrangements of hyperplanes
[5]   A FORMULA FOR THE CHARACTERISTIC POLYNOMIAL OF AN ARRANGEMENT [J].
SOLOMON, L ;
TERAO, H .
ADVANCES IN MATHEMATICS, 1987, 64 (03) :305-325
[7]   On the freeness of 3-arrangements [J].
Yoshinaga, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :126-134
[8]   Characterization of a free arrangement and conjecture of Edelman and Reiner [J].
Yoshinaga, M .
INVENTIONES MATHEMATICAE, 2004, 157 (02) :449-454
[9]  
Ziegler G. M., 1986, CONT MATH, V90, P345
[10]   COMBINATORIAL CONSTRUCTION OF LOGARITHMIC DIFFERENTIAL FORMS [J].
ZIEGLER, GM .
ADVANCES IN MATHEMATICS, 1989, 76 (01) :116-154