Sampling theorem and discrete Fourier transform on the Riemann sphere

被引:9
作者
Calixto, M. [1 ]
Guerrero, J. [2 ]
Sanchez-Monreal, J. C. [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena 30203, Spain
[2] Univ Murcia, Dept Matemat Aplicada, E-30100 Murcia, Spain
关键词
holomorphic functions; coherent states; discrete Fourier transform; sampling; frames;
D O I
10.1007/s00041-008-9027-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using coherent-state techniques, we prove a sampling theorem for Majorana's (holomorphic) functions on the Riemann sphere and we provide an exact reconstruction formula as a convolution product of N samples and a given reconstruction kernel (a sinc-type function). We also discuss the effect of over- and under-sampling. Sample points are roots of unity, a fact which allows explicit inversion formulas for resolution and overlapping kernel operators through the theory of Circulant Matrices and Rectangular Fourier Matrices. The case of band-limited functions on the Riemann sphere, with spins up to J, is also considered. The connection with the standard Euler angle picture, in terms of spherical harmonics, is established through a discrete Bargmann transform.
引用
收藏
页码:538 / 567
页数:30
相关论文
共 50 条
  • [1] Sampling Theorem and Discrete Fourier Transform on the Riemann Sphere
    M. Calixto
    J. Guerrero
    J. C. Sánchez-Monreal
    Journal of Fourier Analysis and Applications, 2008, 14 : 538 - 567
  • [2] Sampling Theorem and Discrete Fourier Transform on the Hyperboloid
    Calixto, M.
    Guerrero, J.
    Sanchez-Monreal, J. C.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (02) : 240 - 264
  • [3] Sampling Theorem and Discrete Fourier Transform on the Hyperboloid
    M. Calixto
    J. Guerrero
    J. C. Sánchez-Monreal
    Journal of Fourier Analysis and Applications, 2011, 17 : 240 - 264
  • [4] Discrete Fourier transform and Riemann identities for θ functions
    Malekar, R. A.
    Bhate, H.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1415 - 1419
  • [5] The discrete Fourier transform for golden angle linogram sampling
    Helou, Elias S.
    Zibetti, Marcelo V. W.
    Axel, Leon
    Block, Kai Tobias
    Regatte, Ravinder R.
    Herman, Gabor T.
    INVERSE PROBLEMS, 2019, 35 (12)
  • [6] Interpolation of spectral data using the shift theorem of the discrete Fourier transform
    Eskola, SM
    Stenman, F
    APPLIED SPECTROSCOPY, 1997, 51 (08) : 1179 - 1184
  • [7] Deriving the Variance of the Discrete Fourier Transform Test Using Parseval's Theorem
    Iwasaki, Atsushi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (02) : 1164 - 1170
  • [8] Uniqueness of the discrete Fourier transform
    Baraquin, Isabelle
    Ratier, Nicolas
    SIGNAL PROCESSING, 2023, 209
  • [9] On the diagonalization of the discrete Fourier transform
    Gurevich, Shamgar
    Hadani, Ronny
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (01) : 87 - 99
  • [10] The discrete Fourier transform of distributions
    Amiot, Emmanuel
    JOURNAL OF MATHEMATICS AND MUSIC, 2017, 11 (2-3) : 76 - 100