CONFORMALITY OF QUASICONFORMAL MAPPINGS AT A POINT, REVISITED

被引:5
作者
Shishikura, Mitsuhiro [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
Quasiconformal mapping; BEHAVIOR;
D O I
10.5186/aasfm.2018.4359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new and simple proof of Teichmfiller-Wittich-Belinskit's and Gutlyanskii-Martio's theorems on the conformality of quasiconformal mappings at a given point. Known proofs gave separate estimates for the radial and angular variations, but our proof unifies them using Grotzsch-type inequality for the variation of cross-ratio of four points on the Riemann sphere. We also give a sufficient condition for C1+alpha-conformality.
引用
收藏
页码:981 / 990
页数:10
相关论文
共 16 条
[1]  
Ahlfors L., 2006, U LECT SER, V38
[2]  
Ahlfors Lars V., 1973, Conformal Invariants: Topics in Geometric Function Theory
[3]  
[Anonymous], 1973, QUASICONFORMAL MAPPI, DOI DOI 10.1007/978-3-642-65513-5
[4]  
BELINSKII P. P., 1954, L'vov Gos. Univ. Uchen. Zap. Ser. Meh. Mat., V6, P58
[5]  
Belinskii PP, 1974, General Properties of Quasiconformal Maps
[6]  
Brakalova M., 1994, KODAI MATH J, V17, P201, DOI [10.2996/kmj/1138039960, DOI 10.2996/KMJ/1138039960]
[7]  
Drasin D., 1986, RESULTS MATH, V10, P54
[8]  
GARDINER F. P., 2000, Mathematical Surveys and Monographs, V76
[9]   Conformality of a quasiconformal mapping at a point [J].
Gutlyanskii, V ;
Martio, O .
JOURNAL D ANALYSE MATHEMATIQUE, 2003, 91 (1) :179-192
[10]  
Hubbard J, 2009, J AM MATH SOC, V22, P77