Facile activation of commercial Ni foil as robust cathode for advanced rechargeable Ni-Zn battery

被引:50
作者
Cheng, Xinyu [1 ,3 ]
Zhou, Lijun [1 ]
Lu, Yongzhuang [1 ]
Xu, Wei [1 ]
Zhang, Peng [2 ]
Lu, Xihong [1 ,3 ]
机构
[1] Wuyi Univ, Sch Appl Phys & Mat, Jiangmen 529020, Peoples R China
[2] Dongguan Univ Technol, Sch Environm & Civil Engn, Dongguan Cleaner Prod Ctr, Dongguan 523808, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, KLGHEI Environm & Energy Chem, MOE Key Lab Bioinorgan & Synthet Chem, Sch Chem, Guangzhou 510275, Guangdong, Peoples R China
关键词
Ni-Zn battery; Ni foil; Ni(OH)(2) layer; Rechargeable; Activation; LITHIUM-ION BATTERIES; HIGH-ENERGY DENSITY; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; HIGH-CAPACITY; ASYMMETRIC SUPERCAPACITORS; RATE CAPABILITY; ULTRAFAST; PERFORMANCE; NANOSHEETS;
D O I
10.1016/j.electacta.2018.01.078
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Developing stable and advanced aqueous Ni-Zn battery for meeting the power-source demands of wearable electronics are highly desirable. Herein, a facile and effective approach is proposed to activate commercial Ni foil to form highly active Ni(OH)(2) layer as robust cathode for Ni//Zn battery. In comparison to the pristine Ni foil, the capacity of the activated Ni foils is greatly enhanced, yielding a remarkable discharge capacity of 0.57 mAh cm(-3) with excellent rate and cycling performances. When directly using the activated Ni foils as cathode, a high-performance Ni//Zn battery with a maximum volumetric energy density of 2.89 mWh cm(-3) is achieved. More improtantly, this as-fabricated Ni//Zn battery also owns outstanding cyclic stability, without any capacity decay after 5000 cycles under various current densities. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:311 / 317
页数:7
相关论文
共 50 条
[1]  
[Anonymous], 2015, ANGEW CHEM INT ED, V54, P7395
[2]   Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries [J].
Balogun, Muhammad-Sadeeq ;
Li, Cheng ;
Zeng, Yinxiang ;
Yu, Minghao ;
Wu, Qili ;
Wu, Mingmei ;
Lu, Xihong ;
Tong, Yexiang .
JOURNAL OF POWER SOURCES, 2014, 272 :946-953
[3]   Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries [J].
Cai, FS ;
Zhang, GY ;
Chen, J ;
Gou, XL ;
Liu, HK ;
Dou, SX .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (32) :4212-4216
[4]   Cross-linked Na2VTi(PO4)3@C hierarchical nanofibers as high-performance bi-functional electrodes for symmetric aqueous rechargeable sodium batteries [J].
Dong, Jing ;
Zhang, Guoming ;
Wang, Xiaoguang ;
Zhang, Sen ;
Deng, Chao .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (35) :18725-18736
[5]   Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide [J].
Gong, Ming ;
Li, Yanguang ;
Zhang, Hongbo ;
Zhang, Bo ;
Zhou, Wu ;
Feng, Ju ;
Wang, Hailiang ;
Liang, Yongye ;
Fan, Zhuangjun ;
Liu, Jie ;
Dai, Hongjie .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :2025-2032
[6]   High-Performance Flexible Solid-State Ni/Fe Battery Consisting of Metal Oxides Coated Carbon Cloth/Carbon Nanofiber Electrodes [J].
Guan, Cao ;
Zhao, Wei ;
Hu, Yating ;
Ke, Qingqing ;
Li, Xin ;
Zhang, Hua ;
Wang, John .
ADVANCED ENERGY MATERIALS, 2016, 6 (20)
[7]  
Hou Z., 2016, J MATER CHEM A, V5, P730
[8]   Construction of Complex CoS Hollow Structures with Enhanced Electrochemical Properties for Hybrid Supercapacitors [J].
Hu, Han ;
Guan, Bu Yuan ;
Lou, Xiong Wen .
CHEM, 2016, 1 (01) :102-113
[9]   Ultrafast Alkaline Ni/Zn Battery Based on Ni-Foam-Supported Ni3S2 Nanosheets [J].
Hu, Pu ;
Wang, Tianshi ;
Zhao, Jingwen ;
Zhang, Chuanjian ;
Ma, Jun ;
Du, Huiping ;
Wang, Xiaogang ;
Cui, Guanglei .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (48) :26396-26399
[10]   Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability [J].
Huang, Yan ;
Ip, Wing Shan ;
Lau, Yuen Ying ;
Sun, Jinfeng ;
Zeng, Jie ;
Yeung, Nga Sze Sea ;
Ng, Wing Sum ;
Li, Hongfei ;
Pei, Zengxia ;
Xue, Qi ;
Wang, Yukun ;
Yu, Jie ;
Hu, Hong ;
Zhi, Chunyi .
ACS NANO, 2017, 11 (09) :8953-8961