Plasma electrolytic oxidation coatings on AZ31 magnesium alloys with Si3N4 nanoparticle additives

被引:73
|
作者
Lou, Bih-Show [1 ,2 ,3 ]
Lin, Yi-Yuan [4 ]
Tseng, Chuan-Ming [4 ]
Lu, Yu-Chu [5 ]
Duh, Jenq-Gong [5 ]
Lee, Jyh-Wei [4 ,6 ,7 ]
机构
[1] Chang Gung Univ, Ctr Gen Educ, Chem Div, Taoyuan, Taiwan
[2] Chang Gung Mem Hosp, Dept Nucl Med, Taoyuan, Taiwan
[3] Chang Gung Mem Hosp, Mol Imaging Ctr, Taoyuan, Taiwan
[4] Ming Chi Univ Technol, Dept Mat Engn, New Taipei, Taiwan
[5] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan
[6] Ming Chi Univ Technol, Ctr Thin Film Technol & Applicat, New Taipei, Taiwan
[7] Chang Gung Univ, Coll Engn, Taoyuan, Taiwan
关键词
Plasma electrolytic oxidation; Si3N4; nanoparticle; AZ31; alloy; Adhesion; Pin-on-disk wear; Corrosion resistance; MICRO-ARC OXIDATION; MG ALLOY; MECHANICAL-PROPERTIES; CORROSION; PARTICLES; AL2O3; AZ91D; PERFORMANCE; BEHAVIOR; HARDNESS;
D O I
10.1016/j.surfcoat.2017.05.094
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magnesium AZ31 alloys have been widely used in the aerospace, automotive, and perSonal computer industries due to their light weight and low density. However, high chemical reactivity, poor corrosion and wear resistance limit their further use in many other fields. The plasma electrolytic oxidation (PEO) process can produce a protective oxide layer on the Mg alloy to improve its mechanical property, wear resistance, and corrosion resistance. In this work, silicon nitride (Si3N4) nanoparticles were added into the reaction electrolyte to study their influence on the microstructure, mechanical, and anticorrosion properties of PEO coatings on AZ31 Mg alloy. The breakdown voltage for igniting the plasma discharge decreased with increasing concentration of Si3N4 nanopartides. The PEO coating without Si3N4 additives in the reaction electrolyte had mainly MgAl2O4 and minor MgO phases. On the other hand, when Si3N4 nanoparticles were included in the PEO reaction, a Mg2SiO4 phase is present. In general, the coating thickness, surface roughness, hardness and elastic modulus increased with increasing Si3N4 nanoparticle concentration up to 3 g/L. A maximum hardness of 16.4 GPa was found in the coating fabricated with 3 g/L Si3N4 nanoparticles added. The PEO coating fabricated using 2 g/L of Si3N4 nanoparticles in its electrolyte exhibited the best corrosion resistance, high hardness, good adhesion, and low coefficient of friction in this study. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 367
页数:10
相关论文
共 50 条
  • [1] Effect of cerium and lanthanum additives on plasma electrolytic oxidation of AZ31 magnesium alloy
    Shen Dejiu
    Ma Haojie
    Guo Changhong
    Cai Jingrui
    Li Guolong
    He Donglei
    Yang Qingxiang
    JOURNAL OF RARE EARTHS, 2013, 31 (12) : 1208 - 1213
  • [2] Influence of Different Electrolyte Additives and Structural Characteristics of Plasma Electrolytic Oxidation Coatings on AZ31 Magnesium Alloy
    Huang, Zhiquan
    Wang, Ruiqiang
    Liu, Xintong
    Wang, Dongdong
    Zhang, Heng
    Shen, Xiaojie
    Shen, Dejiu
    Li, Dalong
    COATINGS, 2020, 10 (09)
  • [3] EFFECT OF NANOPARTICLE ADDITIVES ON THE MICROSTRUCTURE AND CORROSION PROPERTIES OF PLASMA ELECTROLYTIC OXIDATION COATINGS ON MAGNESIUM ALLOYS: A REVIEW
    Yu, Lang
    Jia, Pingping
    Song, Yunpeng
    Zhao, Bocheng
    Pan, Yaokun
    Wang, Jingtao
    Cui, Hongwei
    Feng, Rui
    Li, Hui
    Cui, Xiaoli
    Wang, Yongxiao
    Gao, Zengli
    Zhao, Xingchuan
    Fang, Xiaoying
    Zhang, Lijuan
    SURFACE REVIEW AND LETTERS, 2023, 30 (05)
  • [4] Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys: Comparison of coatings formation mechanism
    Rakoch, A. G.
    Monakhova, E. P.
    Khabibullina, Z., V
    Serdechnova, M.
    Blawert, C.
    Zheludkevich, M. L.
    Gladkova, A. A.
    JOURNAL OF MAGNESIUM AND ALLOYS, 2020, 8 (03) : 587 - 600
  • [5] An investigation of plasma electrolytic oxidation coatings on crevice surface of AZ31 magnesium alloy
    Han, Huiping
    Wang, Ruiqiang
    Wu, Yekang
    Zhang, Xuzhen
    Wang, Dongdong
    Yang, Zhong
    Su, Yu
    Shen, Dejiu
    Nash, Philip
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 811
  • [6] Effect of Various Additives on Performance of Plasma Electrolytic Oxidation Coatings Formed on AZ31 Magnesium Alloy in the Phosphate Electrolytes
    Zhuang Junjie
    Song Renguo
    Li Hongxia
    Xiang Nan
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2018, 33 (03): : 703 - 709
  • [7] Preparation and Characterization of Fluoride-Incorporated Plasma Electrolytic Oxidation Coatings on the AZ31 Magnesium Alloy
    Fu, Lingxia
    Yang, Yanxia
    Zhang, Longlong
    Wu, Yuanzhi
    Liang, Jun
    Cao, Baocheng
    COATINGS, 2019, 9 (12)
  • [8] Structural, tribological and electrochemical behavior of SiC nanocomposite oxide coatings fabricated by plasma electrolytic oxidation (PEO) on AZ31 magnesium alloy
    Vatan, H. Nasiri
    Ebrahimi-kahrizsangi, R.
    Kasiri-asgarani, M.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 683 : 241 - 255
  • [9] Effects of Si3N4 Nanoparticle Doping on the Wear Resistance and Corrosion Resistance of Magnesium Alloy by Plasma Electrolytic Oxidation Coating
    Jiang, Bingchun
    Wen, Zejun
    Huang, Xinting
    Hou, Jie
    Lu, Liwei
    Li, Zhenzhen
    Xu, Bin
    Zhang, Tong
    Yuan, Minghua
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [10] Effect of cerium and lanthanum additives on plasma electrolytic oxidation of AZ31 magnesium alloy
    沈德久
    马豪杰
    郭长虹
    蔡景瑞
    李国龙
    何东磊
    杨庆祥
    Journal of Rare Earths, 2013, 31 (12) : 1208 - 1213