Motion Primitives Classification Using Deep Learning Models for Serious Game Platforms

被引:11
作者
Bakalos, Nikolaos [1 ]
Rallis, Ioannis [2 ]
Doulamis, Nikolaos [1 ]
Doulamis, Anastasios [1 ]
Voulodimos, Athanasios [3 ]
Vescoukis, Vassilios [4 ]
机构
[1] Natl Tech Univ Athens, Athens, Greece
[2] Natl Tech Univ Athens, Comp Vis & Machine Learning, Athens, Greece
[3] Univ West Attica, Dept Informat & Comp Engn, Psachna, Greece
[4] Univ West Attica, Psachna, Greece
基金
欧盟地平线“2020”;
关键词
Serious games; Bidirectional control; Convolution; Computer architecture; Cultural differences; Sensors; Serious Game; Intangible Cultural Heritage; Machine learning; Motion Primitives Classification; dance;
D O I
10.1109/MCG.2020.2985035
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Serious games are receiving increasing attention in the field of cultural heritage (CH) applications. A special field of CH and education is intangible cultural heritage and particularly dance. Machine learning (ML) tools are necessary elements for the success of a serious game platform since they introduce intelligence in processing and analysis of users' interactivity. ML provides intelligent scoring and monitoring capabilities of the user's progress in a serious game platform. In this article, we introduce a deep learning model for motion primitive classification. The model combines a convolutional processing layer with a bidirectional analysis module. This way, RGB information is efficiently handled by the hierarchies of convolutions, while the bidirectional properties of a long short term memory (LSTM) model are retained. The resulting convolutionally enhanced bidirectional LSTM (CEBi-LSTM) architecture is less sensitive to skeleton errors, occurring using low-cost sensors, such as Kinect, while simultaneously handling the high amount of detail when using RGB visual information.
引用
收藏
页码:26 / 38
页数:13
相关论文
共 15 条
[1]   Developing serious games for cultural heritage: a state-of-the-art review [J].
Anderson, Eike Falk ;
McLoughlin, Leigh ;
Liarokapis, Fotis ;
Peters, Christopher ;
Petridis, Panagiotis ;
de Freitas, Sara .
VIRTUAL REALITY, 2010, 14 (04) :255-275
[2]  
Anderson JL, 2009, HAGLEY PERSPECT BUS, P29
[3]   Deep Motifs and Motion Signatures [J].
Aristidou, Andreas ;
Cohen-Or, Daniel ;
Hodgins, Jessica K. ;
Chrysanthou, Yiorgos ;
Shamir, Ariel .
ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (06)
[4]   Style-based motion analysis for dance composition [J].
Aristidou, Andreas ;
Stavrakis, Efstathios ;
Papaefthimiou, Margarita ;
Papagiannakis, George ;
Chrysanthou, Yiorgos .
VISUAL COMPUTER, 2018, 34 (12) :1725-1737
[5]   Folk Dance Evaluation Using Laban Movement Analysis [J].
Aristidou, Andreas ;
Stavrakis, Efstathios ;
Charalambous, Panayiotis ;
Chrysanthou, Yiorgos ;
Himona, Stephania Loizidou .
ACM JOURNAL ON COMPUTING AND CULTURAL HERITAGE, 2015, 8 (04)
[6]  
Bakalos Nikolaos, 2019, 2019 11 INTERNAT C V, P1
[7]  
Doulamis N., 2017, Mixed reality and gamification for cultural heritage, P567
[8]   Deep Convolutional Neural Networks for Human Action Recognition Using Depth Maps and Postures [J].
Kamel, Aouaidjia ;
Sheng, Bin ;
Yang, Po ;
Li, Ping ;
Shen, Ruimin ;
Feng, David Dagan .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (09) :1806-1819
[9]   Combining CNN streams of RGB-D and skeletal data for human activity recognition [J].
Khaire, Pushpajit ;
Kumar, Praveen ;
Imran, Javed .
PATTERN RECOGNITION LETTERS, 2018, 115 :107-116
[10]   A Game-like Application for Dance Learning Using a Natural Human Computer Interface [J].
Kitsikidis, Alexandros ;
Dimitropoulos, Kosmas ;
Ugurca, Deniz ;
Baycay, Can ;
Yilmaz, Erdal ;
Tsalakanidou, Filareti ;
Douka, Stella ;
Grammalidis, Nikos .
UNIVERSAL ACCESS IN HUMAN-COMPUTER INTERACTION: ACCESS TO LEARNING, HEALTH AND WELL-BEING, UAHCI 2015, PT III, 2015, 9177 :472-482