共 46 条
Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres
被引:125
作者:
Lin, Shangchao
[1
,2
]
Ryu, Seunghwa
[1
,3
]
Tokareva, Olena
[1
,4
]
Gronau, Greta
[1
,5
]
Jacobsen, Matthew M.
[6
,7
]
Huang, Wenwen
[4
]
Rizzo, Daniel J.
[8
]
Li, David
[6
,7
]
Staii, Cristian
[8
]
Pugno, Nicola M.
[9
,10
,11
]
Wong, Joyce Y.
[6
,7
]
Kaplan, David L.
[4
]
Buehler, Markus J.
[1
]
机构:
[1] MIT, Dept Civil & Environm Engn, LAMM, Cambridge, MA 02139 USA
[2] Florida State Univ, Mat Sci & Engn Program, Dept Mech Engn, Tallahassee, FL 32310 USA
[3] Korea Adv Inst Sci & Technol, Dept Mech Engn, Taejon 305338, South Korea
[4] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[5] Tech Univ Carolo Wilhelmina Braunschweig, Inst Particle Technol, D-38104 Braunschweig, Germany
[6] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[7] Boston Univ, Div Mat Sci & Engn, Boston, MA 02215 USA
[8] Tufts Univ, Ctr Nanoscop Phys, Dept Phys & Astron, Medford, MA 02155 USA
[9] Univ Trento, Dept Civil Environm & Mech Engn, Lab Bio Inspired & Graphene Nanomech, I-38123 Trento, Italy
[10] Fdn Bruno Kessler, Ctr Mat & Microsyst, I-38123 Trento, Italy
[11] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
基金:
新加坡国家研究基金会;
美国国家科学基金会;
欧洲研究理事会;
关键词:
SPIDER SILK;
MECHANISM;
BEHAVIOR;
SHEAR;
D O I:
10.1038/ncomms7892
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.
引用
收藏
页数:12
相关论文