共 59 条
Morphological, structural and optical characterization of SnO2 nanotube arrays fabricated using anodic alumina (AAO) template-assisted atomic layer deposition
被引:11
作者:
Norek, Malgorzata
[1
]
Putkonen, Matti
[2
]
Zaleszczyk, Wojciech
[3
,4
]
Budner, Boguslaw
[5
]
Bojar, Zbigniew
[1
]
机构:
[1] Mil Univ Technol, Fac Adv Technol & Chem, Dept Adv Mat & Technol, Str Kaliskiego 2, PL-00908 Warsaw, Poland
[2] VTT Tech Res Ctr Finland, Biologinkuja 5,POB 1000, FI-02044 Espoo, Finland
[3] Polish Acad Sci, Inst Phys, Aleja Lotnikow 32-46, PL-02668 Warsaw, Poland
[4] Int Res Ctr MagTop, Aleja Lotnikow 32-46, PL-02668 Warsaw, Poland
[5] Mil Univ Technol, Inst Optoelect, Str Kaliskiego 2, PL-00908 Warsaw, Poland
基金:
芬兰科学院;
关键词:
Porous anodic alumina;
Atomic layer deposition;
Tin oxide;
Luminescence properties;
PHOTOLUMINESCENCE PROPERTIES;
ELECTRONIC-PROPERTIES;
NANOWIRE ARRAY;
QUANTUM WIRES;
TIN OXIDE;
SURFACE;
TEMPERATURE;
GROWTH;
NANOCRYSTALS;
ARRANGEMENT;
D O I:
10.1016/j.matchar.2017.12.009
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Self-aligned and equal-space SnO2 nanotubes (NTs) with external diameters ranging from ca. 124 to ca. 325 nm and wall thickness of around 30 nm were synthesized by AAO template-assisted atomic layer deposition. The bulk and surface structure of the SnO2 nanostructures were studied in detail by XRD and XPS techniques, respectively. The SnO2 NTs were polycrystalline with an average crystallite size of ca. 3 nm. The structure analysis has revealed that the SnO2 NTs are composed of the rutile-type SnO2. The SnO2 nanotube arrays with the smaller external diameters emitted green light centered at around 520 nm. The emission was ascribed to the radiative recombination between electrons trapped in shallow donor levels and holes at the intrinsic surface states, associated with the oxygen deficient sites near surface region. The PL intensity diminished with the nanotube diameter and spacing. With increasing external diameter of the SnO2 nanotubes and decreasing the distance between the neighboring nanotubes, the emission become progressively weaker. The results demonstrate that the structure, morphology and arrangement of SnO2 nanotubes play an important role in their luminescent properties.
引用
收藏
页码:52 / 59
页数:8
相关论文