Three-dimensional hierarchical self-supported multi-walled carbon nanotubes/tin(IV) disulfide nanosheets heterostructure electrodes for high power Li ion batteries

被引:46
作者
Kang, Jin-Gu [2 ]
Lee, Gwang-Hee [1 ,2 ]
Park, Kyung-Soo [1 ,2 ]
Kim, Sang-Ok [3 ]
Lee, Sungjun [4 ]
Kim, Dong-Wan [1 ]
Park, Jae-Gwan [2 ]
机构
[1] Ajou Univ, Dept Mat Sci & Engn, Suwon 443749, South Korea
[2] Korea Inst Sci & Technol, Ctr Optoelect Convergence Syst, Seoul 136791, South Korea
[3] Korea Inst Sci & Technol, Energy Storage Res Ctr, Seoul 136791, South Korea
[4] Korea Res Inst Stand & Sci, Div Phys Met, Taejon 305600, South Korea
基金
新加坡国家研究基金会;
关键词
RECHARGEABLE LITHIUM BATTERIES; CHEMICAL-VAPOR-DEPOSITION; NANOSTRUCTURED MATERIALS; NEGATIVE ELECTRODES; ENERGY-CONVERSION; SILICON NANOWIRES; STORAGE DEVICES; ANODE MATERIALS; SNS2; PERFORMANCE;
D O I
10.1039/c2jm16248b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is of great significance to improve the power density of Li ion batteries (LIBs) in pursuit of high-end products and technologies. Herein, we investigated the three-dimensional (3D) hierarchical self-supported multi-walled carbon nanotubes (MWCNTs)/tin(IV) disulfide nanosheets (SnS2 NS) heterostructured electrodes, demonstrating superior rate capabilities of 480 and 420 mAh g(-1) even at the very high c-rates of 5C and 10C (charging in 6 min), respectively. The origins of the enhancement of the rate capabilities were discussed in detail by focusing on the roles of MWCNTs, which were directly grown on the metallic current collector. Furthermore, we have delicately dealt with the in-plane and plane-normal growth mechanisms of hexagonal SnS2 NS from the crystallographic point of view.
引用
收藏
页码:9330 / 9337
页数:8
相关论文
共 49 条
[1]   Catalysis research of relevance to carbon management: Progress, challenges, and opportunities [J].
Arakawa, H ;
Aresta, M ;
Armor, JN ;
Barteau, MA ;
Beckman, EJ ;
Bell, AT ;
Bercaw, JE ;
Creutz, C ;
Dinjus, E ;
Dixon, DA ;
Domen, K ;
DuBois, DL ;
Eckert, J ;
Fujita, E ;
Gibson, DH ;
Goddard, WA ;
Goodman, DW ;
Keller, J ;
Kubas, GJ ;
Kung, HH ;
Lyons, JE ;
Manzer, LE ;
Marks, TJ ;
Morokuma, K ;
Nicholas, KM ;
Periana, R ;
Que, L ;
Rostrup-Nielson, J ;
Sachtler, WMH ;
Schmidt, LD ;
Sen, A ;
Somorjai, GA ;
Stair, PC ;
Stults, BR ;
Tumas, W .
CHEMICAL REVIEWS, 2001, 101 (04) :953-996
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]  
Besenhard JO, 2002, CHEMPHYSCHEM, V3, P155, DOI 10.1002/1439-7641(20020215)3:2<155::AID-CPHC155>3.0.CO
[5]  
2-S
[6]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[7]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[8]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[9]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[10]   Preparation of Single-Walled Carbon Nanotube/Silicon Composites and Their Lithium Storage Properties [J].
Eom, Ji-Yong ;
Kwon, Hyuk-Sang .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (04) :1015-1021