TOPOLOGICAL COMPLEXITY AND SCHWARZ GENUS OF GENERAL REAL POLYNOMIAL EQUATION

被引:0
作者
Vassiliev, V. A. [1 ,2 ]
机构
[1] VA Steklov Math Inst, Moscow 119991, Russia
[2] Higher Sch Econ, Dept Math, Moscow, Russia
关键词
Complexity; cross-section; Schwarz genus; ramified covering; 13th Hilbert problem; real polynomial;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the minimal number of branchings of arithmatic algorithms of approximate solution of the general real polynomial equation x(d) + a(1)x(d-1) + ... + a(d-1)x + a(d) = 0 of odd degree d grows to infinity at least as log(2) d. The same estimate is true for the c-genus of the real algebraic function associated with this equation, i.e., for the minimal number of open sets covering the space R-d of such polynomials in such a way that on ally of these sets there exists a continuous function whose value at any point (a(1), ..., a(d)), ad) is approximately (up to some sufficiently small epsilon > 0) equal to one of real roots of the corresponding equation.
引用
收藏
页码:617 / 625
页数:9
相关论文
共 13 条
  • [1] [Anonymous], COLLECTED WORKS
  • [2] Arnol'd V. I., 1985, MONOGRAPHS MATH, VI, P82
  • [3] Arnold V.I., 1963, Amer. Math. Soc. Transl., V28, P51
  • [4] ARNOLD VI, 1971, T MOSCOW MATH SOC, V21, P30
  • [5] Fuchs D. B., 1970, FUNCTIONAL ANAL ITS, V4, P143, DOI DOI 10.1007/BF01094491
  • [6] Hilbert D., MATH PROBLEME VORTRA
  • [7] KOLMOGOROV AN, 1956, DOKL AKAD NAUK SSSR+, V108, P179
  • [8] Schwarz A. S., 1961, T MOSKOV MAT OBSC, V10, P217
  • [9] Smale S., 1987, Journal of Complexity, V3, P81, DOI 10.1016/0885-064X(87)90021-5
  • [10] Vasilev V. A., 1996, MATH NOTES, V60, p[670, 799]