Crack growth behavior of natural rubber influenced by functionalized carbon nanotubes

被引:9
作者
Ding, Yaxuan [1 ,2 ]
Cao, Xijuan [1 ,2 ]
Weng, Gengsheng [1 ,2 ]
Yin, Qiyan [1 ,2 ]
Wang, Liting [1 ,2 ]
Chen, Zhongren [3 ]
机构
[1] Ningbo Univ, Fac Mat Sci & Chem Engn, Dept Polymer Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
[2] Ningbo Univ, Key Lab Specialty Polymers, Ningbo 315211, Zhejiang, Peoples R China
[3] Southern Univ Sci & Technol, Dept Chem, Shenzhen 518005, Peoples R China
基金
浙江省自然科学基金; 中国国家自然科学基金;
关键词
elastomers; grafting; graphene and fullerenes; nanotubes; structure-property relations; FATIGUE; MECHANISM; BLACK; MONTMORILLONITE; PROPAGATION; FRACTURE;
D O I
10.1002/app.44527
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this work, the silane coupling agent bis-(triethoxysilylpropyl)-tetrasulfide (TESPT) is used to modify the carbon nanotubes. After modification, carbon nanotubes can be well dispersed in the natural rubber (NR) matrix and form a strong and flexible network. Based on the original real-time crack tip morphology monitoring, crack propagation and scanning electronic microscopy tests, it is revealed that modified carbon nanotubes filled NR samples (NR/F-CNTs) have better crack resistance. It is found that modified carbon nanotubes can resist the cavitation process during cyclic loading. Crack tip morphology monitoring tests indicate that the crack tip of NR/F-CNTs is rougher and the ligaments are thinner and densely distributed. A crack branching phenomenon is also observed. It proves that F-CNTs increase the energy consumption of NR during cyclic loading. It is concluded that the F-CNTs used in this work improve the crack resistance of NR in two ways: the one is cavitation resistance and the other is the increase of energy consumption for crack propagation. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页数:8
相关论文
共 27 条
[1]  
AGLAN H, 1990, INT J FRACTURE, V44, P167
[2]   Organo-montmorillonite as substitute of carbon black in natural rubber compounds [J].
Arroyo, M ;
López-Manchado, MA ;
Herrero, B .
POLYMER, 2003, 44 (08) :2447-2453
[3]   Organomodified montmorillonite as filler in natural and synthetic rubber [J].
Bala, P ;
Samantaray, BK ;
Srivastava, SK ;
Nando, GB .
JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 92 (06) :3583-3592
[4]   In Situ SEM Study of Fatigue Crack Growth Mechanism in Carbon Black-Filled Natural Rubber [J].
Beurrot, Stephanie ;
Huneau, Bertrand ;
Verron, Erwan .
JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 117 (03) :1260-1269
[5]  
Chiara C., 2006, ADV MATER, V18, P689
[6]   Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends [J].
Das, A. ;
Stoeckelhuber, K. W. ;
Jurk, R. ;
Saphiannikova, M. ;
Fritzsche, J. ;
Lorenz, H. ;
Klueppel, M. ;
Heinrich, G. .
POLYMER, 2008, 49 (24) :5276-5283
[7]   The effect of filler-filler and filler-elastomer interaction on rubber reinforcement [J].
Fröhlich, J ;
Niedermeier, W ;
Luginsland, HD .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2005, 36 (04) :449-460
[8]   Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-compo sites [J].
Gojny, FH ;
Schulte, K .
COMPOSITES SCIENCE AND TECHNOLOGY, 2004, 64 (15) :2303-2308
[9]   Design and Evaluation of the Interface Between Carbon Nanotubes and Natural Rubber [J].
Jiang, Hong-Xia ;
Ni, Qing-Qing ;
Natsuki, Toshiaki .
POLYMER COMPOSITES, 2011, 32 (02) :236-242
[10]  
John K., 2009, COMPOS PART A-APPL S, V40, P800