Improvements to shear-deformational models of glacier dynamics through a longitudinal stress factor

被引:15
作者
Adhikari, Surendra [1 ]
Marshall, Shawn J. [1 ]
机构
[1] Univ Calgary, Dept Geog, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ICE-SHEET; BENCHMARK EXPERIMENTS; SUBGLACIAL LAKES; HIGHER-ORDER; FLOW; SENSITIVITY; SURFACE;
D O I
10.3189/002214311798843449
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In a two-dimensional (plane strain) glacier domain, gravity-driven ice flow is balanced by basal drag and the resistance associated with longitudinal stress gradients. The plane strain Stokes model accommodates both these resistances, whereas several simpler models only account for basal drag. Solving the Stokes equations is numerically challenging and computationally expensive, but simpler models may lead to unrealistic dynamical behaviour. Here, we propose a factor which can be introduced in shear-deformational flow models to yield results comparable to those from the plane strain Stokes model. As this factor adapts simpler models to capture the effects of missing dynamics, i.e. longitudinal stress gradients, we refer to it as the longitudinal stress (L-)factor. We assess the usefulness of this factor for idealized domains with complex basal topography and evolving geometry. We apply the model to Haig Glacier, Canadian Rockies, in order to present an illustration of how simulations of glacier response to climate forcing can be improved through the introduction of the L-factor in a shear-deformational flow model.
引用
收藏
页码:1003 / 1016
页数:14
相关论文
共 46 条
[31]   Extracting a climate signal from 169 glacier records [J].
Oerlemans, J .
SCIENCE, 2005, 308 (5722) :675-677
[32]   Modelling the response of glaciers to climate warming [J].
Oerlemans, J ;
Anderson, B ;
Hubbard, A ;
Huybrechts, P ;
Johannesson, T ;
Knap, WH ;
Schmeits, M ;
Stroeven, AP ;
van de Wal, RSW ;
Wallinga, J ;
Zuo, Z .
CLIMATE DYNAMICS, 1998, 14 (04) :267-274
[33]  
OERLEMANS J, GLACIERS CLIMATE CHA
[34]   Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM) [J].
Pattyn, F. ;
Perichon, L. ;
Aschwanden, A. ;
Breuer, B. ;
de Smedt, B. ;
Gagliardini, O. ;
Gudmundsson, G. H. ;
Hindmarsh, R. C. A. ;
Hubbard, A. ;
Johnson, J. V. ;
Kleiner, T. ;
Konovalov, Y. ;
Martin, C. ;
Payne, A. J. ;
Pollard, D. ;
Price, S. ;
Rueckamp, M. ;
Saito, F. ;
Soucek, O. ;
Sugiyama, S. ;
Zwinger, T. .
CRYOSPHERE, 2008, 2 (02) :95-108
[35]   Role of transition zones in marine ice sheet dynamics [J].
Pattyn, F ;
Huyghe, A ;
De Brabander, S ;
De Smedt, B .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2006, 111 (F2)
[36]   Investigating the stability of subglacial lakes with a full Stokes ice-sheet model [J].
Pattyn, Frank .
JOURNAL OF GLACIOLOGY, 2008, 54 (185) :353-361
[37]   A full-stress, thermomechanical flow band model using the finite volume method [J].
Price, S. F. ;
Waddington, E. D. ;
Conway, H. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2007, 112 (F3)
[38]  
Rigsby G.P., 1958, J GLACIOL, V3, P271, DOI DOI 10.1017/S0022143000023911
[39]   Modelling the response of glaciers to a doubling in atmospheric CO2:: a case study of Storglaciaren, northern Sweden [J].
Schneeberger, C ;
Albrecht, O ;
Blatter, H ;
Wild, M ;
Hock, R .
CLIMATE DYNAMICS, 2001, 17 (11) :825-834
[40]   Hydrometeorological relationships on Haig Glacier, Alberta, Canada [J].
Shea, JM ;
Anslow, FS ;
Marshall, SJ .
ANNALS OF GLACIOLOGY, VOL 40, 2005, 2005, 40 :52-60