On the asymptotics of the spectrum of a nonsemibounded vector Sturm-Liouville operator

被引:1
作者
Ismagilov, R. S. [1 ]
Kostyuchenko, A. G. [2 ]
机构
[1] Bauman Moscow State Tech Univ, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Sturm-Liouville operator; spectrum; asymptotics;
D O I
10.1007/s10688-008-0014-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the half-line, we consider a vector Sturm-Liouville operator with a potential that is unbounded below. Asymptotic formulas for the spectrum are given. These formulas involve the eigenvalues of the matrix potential as well as the "rotational velocities" of the eigenvectors.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 7 条
  • [1] ALENITSYN AG, 1976, DIFF URAVN, V12, P428
  • [2] ATKINSON FV, 1982, LECT NOTES MATH, V964, P28
  • [3] Heywood P., 1954, P LOND MATH SOC, V4, P456, DOI 10.1112/plms/s3-4.1.456
  • [4] On the spectrum of a vector Schrodinger operator
    Ismagilov, R. S.
    Kostyuchenko, A. G.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2007, 41 (01) : 31 - 41
  • [5] KOSTYUCHENKO A. G., 1967, FUNCT ANAL APPL, V1, P75, DOI [DOI 10.1007/BF01075868, 10.1007/BF01075868]
  • [6] KOSTYUCHENKO AG, 1973, USP MAT NAUK, V28, P227
  • [7] THE SPECTRAL FLOW AND THE MASLOV INDEX
    ROBBIN, J
    SALAMON, D
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 : 1 - 33