Cooling of the neutron star in Cassiopeia A

被引:75
作者
Blaschke, D. [1 ,2 ]
Grigorian, H. [3 ]
Voskresensky, D. N. [4 ,5 ,6 ]
Weber, F. [7 ]
机构
[1] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland
[2] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[3] Yerevan State Univ, Dept Theoret Phys, Yerevan 375025, Armenia
[4] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
[5] GSI Helmholtzzentrum Schwerionenforsch, EMMI, D-64291 Darmstadt, Germany
[6] GSI Helmholtzzentrum Schwerionenforsch, Div Res, D-64291 Darmstadt, Germany
[7] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA
来源
PHYSICAL REVIEW C | 2012年 / 85卷 / 02期
基金
美国国家科学基金会;
关键词
A SUPERNOVA REMNANT; THERMAL-CONDUCTIVITY; EMISSION; MATTER; SUPERFLUID; CORES;
D O I
10.1103/PhysRevC.85.022802
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We demonstrate that the high-quality cooling data observed for the young neutron star in the supernova remnant Cassiopeia A over the past 10 years-as well as all other reliably known temperature data of neutron stars-can be comfortably explained within the "nuclear medium cooling" scenario. The cooling rates of this scenario account for medium-modified one-pion exchange in dense matter and polarization effects in the pair-breaking formations of superfluid neutrons and protons. Crucial for the successful description of the observed data is a substantial reduction of the thermal conductivity, resulting from a suppression of both the electron and nucleon contributions to it by medium effects. In a few more decades of continued monitoring of Cassiopeia A, the observed data may allow one to put additional constraints on the efficiency of different cooling processes in neutron stars.
引用
收藏
页数:4
相关论文
共 39 条
  • [1] EFFECTIVE INTERACTIONS AND SUPERFLUID ENERGY GAPS FOR LOW-DENSITY NEUTRON MATTER
    AINSWORTH, TL
    WAMBACH, J
    PINES, D
    [J]. PHYSICS LETTERS B, 1989, 222 (02) : 173 - 178
  • [2] Equation of state of nucleon matter and neutron star structure
    Akmal, A
    Pandharipande, VR
    Ravenhall, DG
    [J]. PHYSICAL REVIEW C, 1998, 58 (03): : 1804 - 1828
  • [3] Ashworth W. B. Jr., 1980, Journal for the History of Astronomy, V11, P1
  • [4] Thermal conductivity of neutrons in neutron star cores
    Baiko, DA
    Haensel, P
    Yakovlev, DG
    [J]. ASTRONOMY & ASTROPHYSICS, 2001, 374 (01): : 151 - 163
  • [5] Cooling of neutron stars. Hadronic model
    Blaschke, D
    Grigorian, H
    Voskresensky, DN
    [J]. ASTRONOMY & ASTROPHYSICS, 2004, 424 (03) : 979 - 992
  • [6] The expansion asymmetry and age of the Cassiopeia A supernova remnant
    Fesen, Robert A.
    Hammell, Molly C.
    Morse, Jon
    Chevalier, Roger A.
    Borkowski, Kazimierz J.
    Dopita, Michael A.
    Gerardy, Christopher L.
    Lawrence, Stephen S.
    Raymond, John C.
    van den Bergh, Sidney
    [J]. ASTROPHYSICAL JOURNAL, 2006, 645 (01) : 283 - 292
  • [7] NEUTRINO PAIR EMISSION FROM FINITE-TEMPERATURE NEUTRON SUPERFLUID AND COOLING OF YOUNG NEUTRON STARS
    FLOWERS, E
    RUDERMAN, M
    SUTHERLAND, P
    [J]. ASTROPHYSICAL JOURNAL, 1976, 205 (02) : 541 - 544
  • [8] NEUTRINO EMISSIVITIES OF NEUTRON STARS
    FRIMAN, BL
    MAXWELL, OV
    [J]. ASTROPHYSICAL JOURNAL, 1979, 232 (02) : 541 - 557
  • [9] THERMAL-CONDUCTIVITY OF ELECTRONS AND MUONS IN NEUTRON-STAR CORES
    GNEDIN, OY
    YAKOVLEV, DG
    [J]. NUCLEAR PHYSICS A, 1995, 582 (3-4) : 697 - 716
  • [10] Medium effects in cooling of neutron stars and the 3P2 neutron gap
    Grigorian, H
    Voskresensky, DN
    [J]. ASTRONOMY & ASTROPHYSICS, 2005, 444 (03) : 913 - 929