Always-On 12-nW Acoustic Sensing and Object Recognition Microsystem for Unattended Ground Sensor Nodes

被引:48
作者
Jeong, Seokhyeon [1 ]
Chen, Yu [1 ]
Jang, Taekwang [1 ]
Tsai, Julius Ming-Lin [3 ]
Blaauw, David [1 ]
Kim, Hun-Seok [1 ]
Sylvester, Dennis [2 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[3] InvenSense, San Jose, CA 95110 USA
关键词
Amplifier; analog-to-digital converter (ADC); discrete Fourier transform (DFT); low-noise; microphone; subthreshold; support vector machine (SVM); ultra-low power (ULP);
D O I
10.1109/JSSC.2017.2728787
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an ultra-low power acoustic sensing and object recognition microsystem for Internet of Things applications. The microsystem is targeted for unattended ground sensor nodes where long-term (decades) life time is desired without the need for battery replacement. The system incorporates an microelectromechanical systems microphone as a frontend sensor along with active circuitry to identify target objects. We introduce an algorithm-circuit cross optimization to realize a 12nW stand-alone microsystem that integrates the analog frontend with the digital backend signal classifier. The frequency-domain analysis of target audio signals reveals that the system can operate with a relatively low bandwidth (<500 Hz) and SNR (>3 dB) which significantly relaxes power constraints on both analog frontend and digital backend circuits. To further relax the current requirement of the preceding amplifier, we propose an 8-bit SAR-analog-to-digital converter that is designed to have a highly reduced sampling capacitance (<50 fF). For the digital backend, we propose a feature extractor using the serialized tones-of-interest discrete Fourier transform, replacing a conventional high-power/area-consuming parallel feature extraction using the fast Fourier transform. This approach reduces area and thus leakage power which often dominates the overall power consumption. The proposed system successfully identifies a number of target objects including an electrical generator, a small car, and a truck with >95% reliability and consumes only 12 nW with continuous monitoring.
引用
收藏
页码:261 / 274
页数:14
相关论文
共 16 条
[1]  
[Anonymous], 2016, 602041 IEC
[2]  
[Anonymous], 2007, 19962 ISO
[3]   A 90 nm CMOS, 6 μW Power-Proportional Acoustic Sensing Frontend for Voice Activity Detection [J].
Badami, Komail M. H. ;
Lauwereins, Steven ;
Meert, Wannes ;
Verhelst, Marian .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2016, 51 (01) :291-302
[4]   Silicon microphones - a Danish perspective [J].
Bouwstra, S ;
Storgaard-Larsen, T ;
Scheeper, P ;
Gullov, JO ;
Bay, J ;
Mullenborg, M ;
Rombach, P .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 1998, 8 (02) :64-68
[5]   An Injectable 64 nW ECG Mixed-Signal SoC in 65 nm for Arrhythmia Monitoring [J].
Chen, Yen-Po ;
Jeon, Dongsuk ;
Lee, Yoonmyung ;
Kim, Yejoong ;
Foo, Zhiyoong ;
Lee, Inhee ;
Langhals, Nicholas B. ;
Kruger, Grant ;
Oral, Hakan ;
Berenfeld, Omer ;
Zhang, Zhengya ;
Blaauw, David ;
Sylvester, Dennis .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (01) :375-390
[6]  
Citakovic Jelena, 2009, 2009 IEEE International Solid-State Circuits Conference (ISSCC 2009), P350, DOI 10.1109/ISSCC.2009.4977452
[7]  
Ersoy S, 2013, ISSCC DIG TECH PAP I, V56, P382, DOI 10.1109/ISSCC.2013.6487779
[8]   A 0.20 mm2 3 nW Signal Acquisition IC for Miniature Sensor Nodes in 65 nm CMOS [J].
Harpe, Pieter ;
Gao, Hao ;
van Dommele, Rainier ;
Cantatore, Eugenio ;
van Roermund, Arthur H. M. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2016, 51 (01) :240-248
[9]  
Jang T, 2016, ISSCC DIG TECH PAP I, V59, P102, DOI 10.1109/ISSCC.2016.7417927
[10]   A Super-Pipelined Energy Efficient Subthreshold 240 MS/s FFT Core in 65 nm CMOS [J].
Jeon, Dongsuk ;
Seok, Mingoo ;
Chakrabarti, Chaitali ;
Blaauw, David ;
Sylvester, Dennis .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (01) :23-34