ONE-LEVEL DENSITY OF LOW-LYING ZFROS OF QUADRATIC HECKE L-FUNCTIONS OF IMAGINARY QUADRATIC NUMBER FIELDS

被引:2
作者
Gao, Peng [1 ]
Zhao, Liangyi [2 ]
机构
[1] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
one level density; low-lying zeros; quadratic Hecke character; Hecke L-functions; DIRICHLET L-FUNCTIONS; ELLIPTIC-CURVES; GAUSS SUMS; ZEROS; FAMILIES; STATISTICS; RANK;
D O I
10.1017/S1446788720000397
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a one level density result for the low-lying zeros of quadratic Hecke L-functions of imaginary quadratic number fields of class number 1. As a corollary, we deduce, essentially, that at least (19 - cot(1/4))/16 = 94.27 . . . % of the L-functions under consideration do not vanish at 1/2.
引用
收藏
页码:170 / 192
页数:23
相关论文
共 48 条
  • [41] The fourth moment of quadratic Dirichlet L-functions over function fields
    Florea, Alexandra
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (03) : 541 - 595
  • [42] Non-vanishing modulo p of Hecke L-values over imaginary quadratic fields
    Kundu, Debanjana
    Lei, Antonio
    ISRAEL JOURNAL OF MATHEMATICS, 2024, : 307 - 339
  • [43] Low-lying zeros of elliptic curve L-functions: Beyond the Ratios Conjecture
    Fiorilli, Daniel
    Parks, James
    Sodergren, Anders
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 160 (02) : 315 - 351
  • [44] Moments of quadratic twists of elliptic curve L-functions over function fields
    Bui, Hung M.
    Florea, Alexandra
    Keating, Jonathan P.
    Roditty-Gershon, Edva
    ALGEBRA & NUMBER THEORY, 2020, 14 (07) : 1853 - 1893
  • [45] On the low-lying zeros of Hasse-Weil L-functions for elliptic curves
    Baier, Stephan
    Zhao, Liangyi
    ADVANCES IN MATHEMATICS, 2008, 219 (03) : 952 - 985
  • [46] Selberg's central limit theorem for quadratic dirichlet L-functions over function fields
    Darbar, Pranendu
    Lumley, Allysa
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (04): : 1027 - 1058
  • [47] Modular p-adic L-functions attached to real quadratic fields and arithmetic applications
    Greenberg, Matthew
    Seveso, Marco Adamo
    Shahabi, Shahab
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 721 : 167 - 231