In this paper, we prove a one level density result for the low-lying zeros of quadratic Hecke L-functions of imaginary quadratic number fields of class number 1. As a corollary, we deduce, essentially, that at least (19 - cot(1/4))/16 = 94.27 . . . % of the L-functions under consideration do not vanish at 1/2.
机构:
Scuola Int Super Studi Avanzati, SISSA, Via Bonomea 265, I-34136 Trieste, ItalyScuola Int Super Studi Avanzati, SISSA, Via Bonomea 265, I-34136 Trieste, Italy
机构:
Natl Inst Sci Educ & Res Bhubaneswar, Sch Math Sci, PO Jatni, Bhubaneswar 752050, Odisha, IndiaNatl Inst Sci Educ & Res Bhubaneswar, Sch Math Sci, PO Jatni, Bhubaneswar 752050, Odisha, India
Pujahari, Sudhir
Saikia, Neelam
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Bhubaneswar, Sch Basic Sci, Argul 752050, Odisha, IndiaNatl Inst Sci Educ & Res Bhubaneswar, Sch Math Sci, PO Jatni, Bhubaneswar 752050, Odisha, India