Local Khintchine inequality in rearrangement invariant spaces

被引:4
作者
Astashkin, Serguey V. [1 ]
Curbera, Guillermo P. [2 ]
机构
[1] Samara State Univ, Dept Math & Mech, Samara 443011, Russia
[2] Univ Seville, Facultad Matemat, E-41080 Seville, Spain
关键词
Rademacher functions; Rearrangement invariant space; Khintchine inequality; RADEMACHER MULTIPLICATOR SPACES; SERIES;
D O I
10.1007/s10231-013-0391-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the local version of Khintchine inequality holds in an rearrangement invariant function space on [0,1] if and only if the lower dilation index of the fundamental function of is positive. A further characterization is given, based on the uniform behavior in of the dilations of the logarithmic function. For this, a study of the space of functions acting as multiplication operators in for the tails of Rademacher series is carried out.
引用
收藏
页码:619 / 643
页数:25
相关论文
共 21 条
[1]  
[Anonymous], 1990, LECT NOTES PURE APPL
[2]   Rademacher multiplicator spaces equal to L∞ [J].
Astashkin, Serguei V. ;
Curbera, Guillermo P. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (10) :3493-3501
[3]   Rearrangement invariance of Rademacher multiplicator spaces [J].
Astashkin, Serguei V. ;
Curbera, Guillermo P. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (12) :4071-4094
[4]   Symmetric kernel of Rademacher multiplicator spaces [J].
Astashkin, SV ;
Curbera, GP .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 226 (01) :173-192
[5]   On the multiplier space generated by the Rademacher system [J].
Astashkin, SV .
MATHEMATICAL NOTES, 2004, 75 (1-2) :158-165
[6]  
Bennett C., 1980, Diss. Math, V175, P1
[7]  
Bennett C., 1988, Interpolation of operators
[8]   INDEPENDENT SEQUENCES WITH STEIN PROPERTY [J].
BURKHOLD.DL .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (04) :1282-&
[9]  
Carrillo-Alanís J, 2011, P AM MATH SOC, V139, P2753, DOI 10.1109/CTS.2011.5928658
[10]   Multiplication operators on the space of Rademacher series in rearrangement invariant spaces [J].
Curbera, GP ;
Rodin, VA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 :153-162